Advertisement

Foundations of Science

, Volume 24, Issue 1, pp 73–93 | Cite as

A Philosophical Critique of the Distinction of Representational and Pragmatic Measurements on the Example of the Periodic System of Chemical Elements

  • Ave MetsEmail author
Article
  • 32 Downloads

Abstract

Measurement theory in (Hand in The world through quantification. Oxford University Press, 2004; Suppes and Zinnes in Basic measurement theory. Psychology Series, 1962) is concerned with the assignment of number to objects of phenomena. Representational aspect of measurement is the extent to which the assigned numbers and arithmetics truthfully represent the underlying objects and their relations, and is characteristic to natural sciences; pragmatic aspect is the extent to which the assigned numbers serve purposes other than representing the underlying phenomena, and is characteristic to social sciences (Hand in The world through quantification. Oxford University Press, 2004). Here I criticise this distinction of representational and pragmatic measurements on the basis of the earlier history of the periodic system of chemical elements, viewed in terms of a practice based philosophy of science by Rein Vihalemm. I argue that the periodic system, although a natural scientific system interpretable as a measurement system, has considerable, in Hand’s terms pragmatic, aspects in it. Those aspects include: tampering with the material measurement results for the theoretical ideal of systematicity; adopting metaphysical assumptions that cannot be experimentally proven, like individuality of elements and atomicity; theoretical construction of the abstract entity—element—as the reference of the measurement system amenable to mathematically elegant ordering. Contrary to Suppes and Zinnes (Basic measurement theory. Psychology Series, 1962) I also argue for the dependence of the assigned numerical system on the material-procedural base of the measurement.

Keywords

Measurement theory Representational measurment Pragmatic measurement Periodic table of chemical elements Practical realism 

Notes

Acknowledgements

I would like to extend my gratitude to the referees of this article for their thorough and extensive reviews which provided valuable input to the revision process, to Ain Rada for advice on important aspects of chemical theory, to my supervisor Rein Vihalemm for his ideas and for encouraging me to engage in the philosophy of chemistry, and to my colleagues at the University of Tartu. This article was supported by the Estonian Research Council grants IUT20-5 and ETF7946, Estonian Ministry of Education and Research grant SF0180110s08, University of Tartu grants PFLFI15915 and PHVFI16941, and the European Union through the European Regional Development Fund (Centre of Excellence in Estonian Studies).

References

  1. Baird, D. C. (1964). Experimentation: An introduction to measurement theory and experiment design. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  2. Bensaude-Vincent, B. (1982). L’éther, élément chimique: un essai malheureux de Mendéléev? The British Journal for the History of Science, 15(2), 183–188.CrossRefGoogle Scholar
  3. Bensaude-Vincent, B. (1986). Mendeleev’s periodic system of chemical elements. The British Journal for the History of Science, 19(1), 3–17.CrossRefGoogle Scholar
  4. Bensaude-Vincent, B. (1997). Dix-neuvième bifurcation : anticipation ou résumé du passé? Mendeleïev: histoire d’une découverte. In Serres, Michel (ed.) (1997). Éléments d’histoire des sciences (pp. 665–696). Paris: Larousse-Bordas.Google Scholar
  5. Bensaude-Vincent, B., & Simon, J. (2008). Chemistry: The impure science. London: Imperial College Press.CrossRefGoogle Scholar
  6. Bensaude-Vincent, B., & Stengers, I. (1996). A history of chemistry. Cambridge: Harvard University Press.Google Scholar
  7. Brescia, F., Arents, J., Meislich, H., & Turk, A. (1975). Fundamentals of CHEMISTRY. New York, San Francisco, London: Academic Press.Google Scholar
  8. Brooks, N. M. (2002). Developing the periodic law: Mendeleev’s work during 1869–1871. Foundations of Chemistry, 4, 127–147.CrossRefGoogle Scholar
  9. Campbell, N.R. (2012/1920). Physics, the elements. Forgotten Books/London: Cambridge University Press.Google Scholar
  10. Chang, H. (2012). Is water H 2 O? Evidence, realism and pluralism. Boston Studies in the Philosophy of Science 293. Dordrecht: Springer.Google Scholar
  11. D’Agostini, G. (1999). Bayesian reasoning in high-energy physics: Principles and applications. Geneva: CERN—Cervice d’information scientifique.Google Scholar
  12. De Chancourtois, A.-É. B. (1862). Mémoire sur un classement des corps simples ou radicaux appelé vis tellurique. (Extraits par l’auteur). Comptes rendus hebdomadaires des séances de l’Académie des sciences, tome 54, janvier-juin 1862 (pp. 757–761). Paris: imprimerie de Mallet-Bachelier. Available: http://gallica.bnf.fr/ark:/12148/bpt6k30115/f757.image.
  13. Döbereiner, J. W. (1895/1829). Versuch zu einer Gruppirung der elementaren Stoffe nach ihrer Analogie. In Meyer, J. L. (ed.) Die Anfänge des natürlichen Systemes der chemischen Elemente (pp. 3–8). Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
  14. Dumas, J.-B. (1859). Mémoire sur les équivalents des corps simples. Paris: Mallet-Bachelier. Available http://gallica.bnf.fr/ark:/12148/bpt6k90419b/f3.image.
  15. Edwards, P. N. (1999). Global climate science, uncertainty and politics: Data-laden models, model-filtered data. Science as Culture, 8(4), 437–472.CrossRefGoogle Scholar
  16. Ellis, B. (1968). Basic concepts of measurement. Cambridge: Cambridge University Press.Google Scholar
  17. Gordin, M. D. (2004). A well-ordered thing. Dmitrii Mendeleev and the shadow of the periodic table. New York: Basic Books.Google Scholar
  18. Hand, D. J. (2004). Measurement theory and practice. The world through quantification: Oxford University Press.Google Scholar
  19. Krantz, D. H., Duncan Luce, R., Suppes, P., & Tversky, A. (1971). Foundations of measurement. Volume I Additive and polynomial representations. Mineola, New York: Dover Publications.Google Scholar
  20. Mendeléeff, D. (1891). The principles of chemistry volume I. New York and Bombay: Longmans, Green, and Co. Available https://play.google.com/books/reader?id=j9gKAAAAIAAJ&printsec=frontcover&output=reader&hl=en&pg=GBS.PR3.
  21. Mendeléeff, D. (1897). The principles of chemistry volume II. New York and Bombay: Longmans, Green, and Co. Available https://archive.org/details/cu31924012367458.
  22. Mendeléeff, D. (1901). The principles of chemistry (Part One). New York: P.F. Collier and Son. Available https://archive.org/details/principlesofchem01menduoft.
  23. Mendeleev (Meндeлѣeв), D. (1869). Cooтнoщeнie cвoйcтвъ cъ aтoмнымъ вѣcoмъ элeмeнтoвъ (On the Correlation of the Properties and Atomic Weights of the Elements). Жypнaлъ pyccкaгo xимичecкaгo oбщecтвa. Toмъ I. 60–77 (in Russian). Available http://www.knigafund.ru/books/51872/read#page1 (a summary of it can be found in Mendeléeff 1897, footnote on p. 17).
  24. Mukherjee, S. (2011). Applied mineralogy: Application in industry and environment. Dordrecht: Springer.CrossRefGoogle Scholar
  25. Pfanzagl, J. (1971). Theory of measurement. Würzburg, Wien: Physica-Verlag.CrossRefGoogle Scholar
  26. Przełęcki, M. (1974). Empirical meaningfulness of quantitative statements. Synthese, 26, 344–355.CrossRefGoogle Scholar
  27. Scerri, E. R. (2007). The periodic table: Its story and its significance. New York: Oxford University Press.Google Scholar
  28. Stepin, V. (1999/2000). Theoretical knowledge. Moskva (in Russian).Google Scholar
  29. Suppes, P. (1959). Measurement, empirical meaningfulness, and three-valued logic. In C. V. Churchman & P. Ratoosh (Eds.), Measurement: Definitions and theories (pp. 129–143). New York: Wiley.Google Scholar
  30. Suppes, P., & Zinnes, J. L. (1962). Basic measurement theory. Psychology Series.Google Scholar
  31. Tal, E. (2012). The epistemology of measurement: A model-based account (thesis). University of Toronto.Google Scholar
  32. Van Brakel, J. (1984). Norms and facts in measurements. Measurement, 2(1), 45–51.CrossRefGoogle Scholar
  33. Van Brakel, J. (1990). Units of measurement and natural kinds: Some Kripkean considerations. Erkenntnis, 33, 297–317.CrossRefGoogle Scholar
  34. Van Spronsen, J. W. (1969). The periodic system of chemical elements. A history of the first hundred years. Amsterdam: Elsevier.Google Scholar
  35. Vihalemm, R. (Ed.). (1979). Teaduse metodoloogia (Methodology of science). Eesti Raamat: Tallinn. (in Estonian).Google Scholar
  36. Vihalemm, R. (2007). A. Whitehead’s metaphysical ontology and I. Prigogine’s scientific ontology: From a point of view of a theoretical conception of science. Problemos, 71, 78–89.CrossRefGoogle Scholar
  37. Vihalemm, R. (2008). How to understand science (2003). In Vihalemm, R. (Ed.), Teadusfilosoofilisest vaatepunktist (pp. 401–419). Eesti Keele Sihtasutus (in Estonian).Google Scholar
  38. Vihalemm, R. (2011). Towards a practical realist philosophy of science. Baltic Journal of European Studies, 1(9), 46–60.Google Scholar
  39. Vihalemm, R. (2015). Theoretical philosophy and philosophy of science in soviet times. Studia Philosophica Estonica, 8(2), 195–227.Google Scholar
  40. Vihalemm, R. (2016). Science, φ-science, and the dual character of chemistry. In E. Scerri & G. Fisher (Eds.), Essays in the philosophy of chemistry (pp. 352–380). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of TartuTartuEstonia

Personalised recommendations