Advertisement

Using Abstract Elastic Membranes to Learn About Quantum Measurements

  • Massimiliano Sassoli de BianchiEmail author
Article

Abstract

The objectives of the Center Leo Apostel for Interdisciplinary Studies were summarized by his creator as: interdisciplinarity, construction of world views and broad dissemination of scientific knowledge. In compliance with the third of these objectives, we provide a rigorous but accessible popular science version of a research article published by Aerts and Sassoli de Bianchi (Ann Phys 351:975–1025, 2014), where an extended version of the quantum formalism was proposed as a possible solution to the measurement problem. We hope that through articles of this kind, written with an educational spirit and addressed to both academic and nonacademic readers, the interdisciplinary dialogue about foundational issues will be stimulated and the gap between the different sciences reduced.

Keywords

Measurement problem Hidden-variable Hidden-measurement 

References

  1. Aerts, D., & de Bianchi, M. S. (2014). The extended bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics (N. Y.), 351, 975–1025.  https://doi.org/10.1016/j.aop.2014.09.020. (See also the Erratum: Ann. Phys. 366, 197–198.  https://doi.org/10.1016/j.aop.2016.01.001).
  2. Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics. Journal of Mathematics and Physics, 27, 202–210.  https://doi.org/10.1063/1.527362.CrossRefGoogle Scholar
  3. Aerts, D., & de Bianchi, M. S. (2014). Solving the hard problem of Bertrand’s Paradox. Journal of Mathematics and Physics, 55, 083503.  https://doi.org/10.1063/1.4890291.CrossRefGoogle Scholar
  4. Aerts, D., & de Bianchi, M. S. (2015a). The unreasonable success of quantum probability I: Quantum measurements as uniform fluctuations. Journal of Mathematical Psychology, 67, 51–75.  https://doi.org/10.1016/j.jmp.2015.01.003.CrossRefGoogle Scholar
  5. Aerts, D., & de Bianchi, M. S. (2015b). Many-measurements or many-worlds? A dialogue. Foundation Science, 20, 399–427.  https://doi.org/10.1007/s10699-014-9382-y.Google Scholar
  6. Aerts, D., & de Bianchi, M. S. (2016). The extended bloch representation of quantum mechanics explaining superposition, interference and entanglement. Journal of Mathematical Physics, 57, 122110.  https://doi.org/10.1063/1.4973356.CrossRefGoogle Scholar
  7. Aerts, D., & de Bianchi, M. S. (2017). Universal measurements. Singapore: World Scientific.CrossRefGoogle Scholar
  8. Aerts, D., & de Bianchi, M. S. (2017). Quantum measurements as weighted symmetry breaking processes: The hidden measurement perspective. International Journal of Quantum Foundations, 3(3), 1–16.Google Scholar
  9. Aerts, D., de Bianchi, M. S., & Sozzo, S. (2017). The extended Bloch representation of entanglement and measurement in quantum mechanics. International Journal of Theoretical Physics, 56, 3727–3739.  https://doi.org/10.1007/s10773-016-3257-7.CrossRefGoogle Scholar
  10. de Bianchi, M. S., & de Bianchi, L. S. (2015). Solving the measurement problem [Video file]. Retrieved from https://youtu.be/Tk4MsAfC8vE.

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Center Leo Apostel for Interdisciplinary StudiesBrussels Free UniversityBrusselsBelgium

Personalised recommendations