Foundations of Science

, Volume 24, Issue 1, pp 39–49 | Cite as

Infinities as Natural Places

  • Juliano C. S. NevesEmail author


It is shown that a notion of natural place is possible within modern physics. For Aristotle, the elements—the primary components of the world—follow to their natural places in the absence of forces. On the other hand, in general relativity, the so-called Carter–Penrose diagrams offer a notion of end for objects along the geodesics. Then, the notion of natural place in Aristotelian physics has an analog in the notion of conformal infinities in general relativity.


Aristotle Natural places General relativity Carter–Penrose diagrams 



I would like to thank IMECC-UNICAMP for the kind hospitality and referees for comments and suggestions.


  1. Abbott, B. P., et al., & LIGO Scientific Collaboration and Virgo Collaboration. (2016). Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116, 061102.Google Scholar
  2. Ade, P. A. R., et al., & Planck Collaboration. (2016). Planck 2015 results XIII. Cosmological parameters. Astron Astrophys, 594, A13.Google Scholar
  3. Aristotle. (1922a). On the generation and corruption, translated by H. H. Joachim. Oxford: Clarendon Press.Google Scholar
  4. Aristotle. (1922b). On the generation and corruption, translated by H. H. Joachim. Oxford: Clarendon Press.Google Scholar
  5. Aristotle. (1983). Physics III and IV, translated by E. Hussey. Oxford: Clarendon Press.Google Scholar
  6. Carter, B. (1966). Complete analytic extension of the symmetry axis of Kerr’s solution of Einstein’s equations. Physical Review, 141(4), 1242–1247.CrossRefGoogle Scholar
  7. Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354(7), 769–822.CrossRefGoogle Scholar
  8. Einstein, A. (1917). Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 142–152.Google Scholar
  9. Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space–time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Jammer, M. (1954). Concepts of space. Cambridge, MA: Harvard University Press.Google Scholar
  11. Machamer, P. K. (1978). Aristotle on natural place and natural motion. ISIS, 69(3), 377–387.CrossRefGoogle Scholar
  12. Matthen, M., & Hankinson, R. J. (1993). Aristotle’s universe: Its form and matter. Synthese, 96, 417–435.CrossRefGoogle Scholar
  13. Neves, J. (2013). O eterno retorno hoje. Cadernos Nietzsche, 32, 283–296.CrossRefGoogle Scholar
  14. Neves, J. C. S. (2016). Nietzsche for physicists. arXiv:1611.08193.
  15. Neves, J. C. S. (2017a). Bouncing cosmology inspired by regular black holes. General Relativity and Gravitation, 49, 124.CrossRefGoogle Scholar
  16. Neves, J. C. S. (2017b). Einstein contra Aristotle: The sound from the heavens. Physics Essays, 30, 279–280.CrossRefGoogle Scholar
  17. Newton, I. (1846). Mathematical principles of natural philosophy, translated by Andrew Motte. New York: Daniel Adee.Google Scholar
  18. Nietzsche, F. (2002). Beyond good and evil, translated by J. Norman. Cambridge: Cambridge University Press.Google Scholar
  19. Nietzsche, F. (2007). On the genealogy of morality, translated by Carol Diethe. Cambridge: Cambridge University Press.Google Scholar
  20. Novello, M., & Perez, B. S. E. (2008). Bouncing cosmologies. Physics Reports, 463, 127–213.CrossRefGoogle Scholar
  21. Penrose, R. (1964). Conformal treatment of infinity. In: de Witt B., & de Witt C. (Eds.), Relativity, groups and topology (pp. 565–584). New York-London: Gordon and Breach. Reprinted in 2011 in General Relativity and Gravitation, 43, 901–922.Google Scholar
  22. Plato. (1931). Timaeus, translated by B. Jowett. London: Oxford University Press.Google Scholar
  23. Schummer, J. (2008). Aristotelian physics. In K. L. Lerner & B. W. Lerner (Eds.), Scientific thought in context (Vol. 2, pp. 759–768). Detroit: Gale.Google Scholar
  24. Stöltzner, M. (1994). Action principles and teleology. In H. Atmanspacher & G. J. Dalenoort (Eds.), Inside versus outside (pp. 33–62). Berlin: Springer.CrossRefGoogle Scholar
  25. Wald, R. M. (1984). General relativity. Chicago: The University of Chicago Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto de Matemática, Estatística e Computação CientíficaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations