Advertisement

Foundation of Quantum Mechanics: Once Again

  • Paul Drechsel
Article
  • 28 Downloads

Abstract

Brukner and Dakić (Quantum theory and beyond: is entanglement special? 2009. https://arxiv.org/abs/0911.0695) proposed a very simple axiom system as a foundation for quantum theory. It implies the qubit and quantum entanglement. Because this axiom system aims at the core of our understanding of nature, it must be brought to the forum of the philosophy of nature. For philosophical reasons, a completely denied champion of quantum theory, imaginarity i, is added into this axiom system. In relation to Bell’s inequality, this leads to a deeper ‘philosophical’ understanding of quantum nature based on qubits and entanglement. Both opens a way as well as one can get to the fundamental Schrödinger equation of quantum mechanics with the help of a complex valued Brownian motion.

Keywords

Bit versus Qubit imaginarity entanglement Brownian motion classical nature versus quantum nature classical thought cs. quantum thought 

References

  1. Aebli, H. (1981). Denken: Das Ordnen des Tuns. Bd. I: Kognitive Aspekte der Handlungstheorie. Stuttgart. 1980. Bd. II: Denkprozesse. Stuttgart.Google Scholar
  2. Aerts, D. (1983). The description of one and many physical systems. In C. Gruber (Ed.), Foundations of quantum mechanics (pp. 63–148). Lausanne.Google Scholar
  3. Aerts, D. (1991). A mechanistic classical laboratory situation violating the Bell inequalities with, exactly ‘in the same way’ as its violations by the EPR experiments. Physica Acta, 64, 1–23.Google Scholar
  4. Aerts, D. (2009). Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. Foundations of Science, 14, 361–411.CrossRefGoogle Scholar
  5. Aerts, D. (2010a). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics, 49, 2950–2970.CrossRefGoogle Scholar
  6. Aerts, D. (2010b). A potentiality and conceptuality interpretation of quantum physics. Philosophica, 83, 15–52.Google Scholar
  7. Aerts, D. (2013a). General quantum modeling of combining concepts: A quantum field model in Fock space. http://uk.arxiv.org/abs/0705.1740.
  8. Aerts, D. (2013b). Quantum theory and conceptuality: Matter, stories, semantics and space-time. http://arxiv.org/abs/1110.4766.
  9. Aerts, D., & D’Hooghe, B. (2009). Classical logical versus quantum conceptual thought: examples in economics, decision theory and concept theory. In P. D. Bruza, D. Sofge, W. Lawless, C. J. van Rijsbergen, & M. Klusch (Eds.), Proceedings of QI 2009–third international symposium on quantum interaction, book series: Lecture notes in computer science (Vol. 5494, pp. 128–142). Berlin: Springer.Google Scholar
  10. Aerts, D., & Gabora, L. (2005a). A theory of concepts and their combinations I: The structure of the sets of contexts and properties. Kybernetes, 34, 167–191.CrossRefGoogle Scholar
  11. Aerts, D., & Gabora, L. (2005b). A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes, 34, 192–221.CrossRefGoogle Scholar
  12. Aerts, D., & Sozzo, S.(2011). Quantum structure in cognition: Why and how concepts are entangled. In Proceedings of QI2011–fifth international symposium on quantum interaction. Quantum interaction. Lecture notes in computer science (pp. 116–127). Aberdeen, Scotland: Robert Gordon University.Google Scholar
  13. Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49(1982), 91–94.CrossRefGoogle Scholar
  14. Audretsch, J. (1994). Die unvermeidbarkeit der Quantenmechanik. In M. Klaus, & W. Schirmacher (Eds.), Quanten, Chaos und Dämonen. Erkenntnistheoretische Aspekte der Modernen Physik (pp. 75–106). Mannheim: BI Wissenschaftsverlag.Google Scholar
  15. Audretsch, J. (2007). Entangled systems: New directions in quantum physics. Weinheim: Wiley.CrossRefGoogle Scholar
  16. Auyang, S. Y. (1991). How is quantum field theory possible?. New York: Oxford University Press.Google Scholar
  17. Brukner, C., & Dakić, B. (2009). Quantum theory and beyond: Is entanglement special? https://arxiv.org/abs/0911.0695.
  18. Chung, K. L., & Zhao, Z. (1995). From Brownian motion to Schrödinger’s equation. Berlin.Google Scholar
  19. Görnitz, T. (1999). Quanten sind anders. Heidelberg: Die verborgene Einheit der Welt.Google Scholar
  20. Görnitz, T., & Görnitz, B. (2002). Der Kreative Kosmos. Geist und Materie aus Information. Heidelberg: Springer.CrossRefGoogle Scholar
  21. Görnitz, T., & Görnitz, B. (2016). Von der Quantenphysik zum Bewusstsein. Kosmos, Geist und Materie. Berlin: Springer.CrossRefGoogle Scholar
  22. Kauffman, L. H. (2015). Iterants, fermions and majorana operators. In R. L. Amoroso (Ed.), Unified Field Mechanics. Natural Science Beyond the Veil of Spacetime Proceedings of the IX Symposium Honoring Noted French Mathematical Physicist Jean-Pierre Vigier. (Noetic Advanced Studies Institute, USA), Louis H. Kauffman (University of Illinois at Chicago, USA), Peter Rowlands (University of Liverpool, UK).Google Scholar
  23. Le Gall, J. F. (2016). Brownian motion, martingales, and stochastic calculus. Berlin: Springer.CrossRefGoogle Scholar
  24. Nagasawa, M. (1993). Schrödinger equations and diffusion theory. Basel: Birkhofer.CrossRefGoogle Scholar
  25. Ord, G. N. (1998). Schrödinger’s equation and classical Brownian motion. New York: Wiley.Google Scholar
  26. Roepstorff, G. (1996). Path integral approach to quantum physics: An introduction (Texts and Monographs in Physics). New York: Springer.Google Scholar
  27. Schrödinger, E. (1935/1936). Discussion of probability relations between separated systems. In Proceedings of the Cambridge Philosophical Society (Vol. 31 (1935), pp. 555–563; Vol. 32 (1936), pp. 446–451).Google Scholar
  28. Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundation of physics, 29(4), 631–643.CrossRefGoogle Scholar
  29. Zeilinger, A. (2003). Einsteins Schleier. München.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of MainzMainzGermany

Personalised recommendations