Foundations of Science

, Volume 23, Issue 4, pp 779–794 | Cite as

Discovering the Principle of Finality in Computational Machines

  • Gonzalo GénovaEmail author
  • Ignacio Quintanilla Navarro


In this essay we argue that the notion of machine necessarily includes its being designed for a purpose. Therefore, being a mechanical system is not enough for being a machine. Since the experimental scientific method excludes any consideration of finality on methodological grounds, it is then also insufficient to fully understand what machines are. Instead in order to understand a machine it is first required to understand its purpose, along with its structure, in clear parallel with Aristotle’s final and formal causes. Obviously, purpose and structure are not machine components that can physically interact with other components; nonetheless they are essential to understanding their operation. This casts an interesting light on the relationship between mind and body: for just as an artifact’s finality and structure explain its operation, so also consciousness is the explanation—not the efficient cause—of specifically human behavior. What machines and human beings have in common is that, in order to understand them, it is necessary to appeal to the principle of finality. Yet while finality is given and extrinsic in the case of machines, we human beings are characterized by the ability to self-propose our own ends. Since the principle of finality is essential to understanding the production of machines, the traditional view in modern Western philosophy that finality lies beyond the scope of objective/scientific knowledge should be rectified to allow for a genuine science of the artificial. We think a correct understanding of final causality will overcome current resistance to this principle.


Finality Mechanism Consciousness Theory of the four causes Science of the artificial 


  1. Arana, J. (2015). La conciencia inexplicada. Madrid: Biblioteca Nueva.Google Scholar
  2. Aristotle. (d. 323 BC). Aristotle in 23 volumes. Cambridge: Harvard University Press, 1944. (
  3. Bacon, F. (1620). Novum organum. Translated and edited by J. Devey: Novum organum; or, true suggestions for the interpretation of nature. New York: P. F. Collier & Son, 1902.Google Scholar
  4. Bacon, F. (1623). De Augmentis Scientiarum. In The advancement of learning (H. Morley, Trans.). London: Cassell & Company, 1893.Google Scholar
  5. Borges, J. L. (1975). There are more things. In El libro de arena. Buenos Aires: Emecé.Google Scholar
  6. Cantor, N. F., & Klein, P. L. (1969). Seventeenth-century rationalism: Bacon and Descartes. Waltham, Massachusetts: Blaisdell.Google Scholar
  7. Chaitin, G. (2005). Meta math! The quest for omega. New York: Vintage Books.Google Scholar
  8. Chalmers, D. (1996). The conscious mind. In search of a fundamental theory. Oxford: Oxford University Press.Google Scholar
  9. Dennett, D. (1991). Consciousness explained. London: The Penguin Press.Google Scholar
  10. Descartes, R. (1648). Traité de l´Homme. Edited by S. Gaukroger: Descartes: The world and other writings. Cambridge: Cambridge University Press, 1998.Google Scholar
  11. Dessauer, F. (1956). Streit um die Technik. Frankfurt am Main: Knecht.Google Scholar
  12. Falcon, A. (2015). Aristotle on Causality. In Edward N. Zalta (Ed.), The stanford encyclopedia of philosophy (Spring 2015 Edition).
  13. Farrell, R., & Hooker, C. (2012). The Simon–Kroes model of technical artifacts and the distinction between science and design. Design Studies, 33(5), 480–495.CrossRefGoogle Scholar
  14. Galle, P., & Kroes, P. (2014). Science and design: Identical twins? Design Studies, 35(3), 201–231.CrossRefGoogle Scholar
  15. Génova, G. (2016). Máquinas computacionales y conciencia artificial. Naturaleza y Libertad , 7, 123–143.Google Scholar
  16. Génova, G., Llorens, J., & Morato, J. (2012). Software engineering research: The need to strengthen and broaden the classical scientific method. In M. Mora, O. Gelman, A.L. Steenkamp and M. Raisinghani (eds.), Research methodologies, innovations and philosophies in software systems engineering and information systems (pp. 106–125), IGI Global.Google Scholar
  17. Génova, G., & Quintanilla Navarro, I. (2018). Are human beings humean robots? Journal of Experimental & Theoretical Artificial Intelligence , 30(1), 177–186.CrossRefGoogle Scholar
  18. Godzinski, R. (2005). (En)Framing Heidegger’s Philosophy of Technology. Essays in Philosophy, 6(1), 1–9.Google Scholar
  19. Goethe, J. W. (1790). Versuch die Metamorphose der Pflanzen zu erklären. In The metamorphosis of plants (D. Miller, Trans.). Cambridge: MIT Press, 2009.Google Scholar
  20. Hankinson, J. R. (1998). Cause and explanation in ancient greek thought. Oxford: Oxford University Press.Google Scholar
  21. Heidegger, M. (1954). Die Frage nach der Technik. In Vorträge und Aufsätze. English translation: The question concerning technology and other essays. New York: Harper, 1977.Google Scholar
  22. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.CrossRefGoogle Scholar
  23. Hill, R. K. (2016). What an algorithm is. Philosophy & Technology, 29(1), 35–59.CrossRefGoogle Scholar
  24. Ibn Rushd. (d. 1198). The decisive treatise determining the connection between the law and wisdom, and epistle dedicatory (C.E. Butterworth, Trans.). Provo: Brigham Young University Press, 2001.Google Scholar
  25. Kroes, P. (2010). Engineering and the dual nature of technical artefacts. Cambridge Journal of Economics, 34(1), 51–62.CrossRefGoogle Scholar
  26. La Mettrie, J.O. (1747). L’Homme Machine. In Machine man and other writings (A. Thomson, Trans.). Cambridge: Cambridge University Press, 1996.Google Scholar
  27. Laplace, P. S. (1814). Essai philosophique sur les probabilités. In A philosophical essay on probabilities (F. W. Truscott & F. L. Emory, Trans.). 6th edn. (1840), London: Chapman & Hall, 1902.Google Scholar
  28. Leibniz, G. W. (1695). Système nouveau de la nature et de la communication des substances, aussi bien que de l’union qu’il y a entre l’âme et le corps. In New system of nature, and of the communication of substances, as well as of the union of soul and body (A. E. Kroeger, Trans.). The Journal of Speculative Philosophy 5(3):209–219, July 1871.Google Scholar
  29. López Corredoira, M. (2005). Somos fragmentos de Naturaleza arrastrados por sus leyes. Madrid: Vision Net.Google Scholar
  30. Malebranche, N. (1674). De la recherche de la vérité et Éclaircissements. In The search after truth and elucidations (T.M. Lennon & P.J. Olscamp, Trans.). Cambridge: Cambridge University Press, 1997.Google Scholar
  31. Maritain, J. (1934). Sept leçons sur l’être et les premiers principes de la raison spéculative. Paris: Téqui. (A Preface to Metaphysics: Seven Lectures on Being. New York and London: Sheed and Ward, 1939).Google Scholar
  32. Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56(2), 288–302.CrossRefGoogle Scholar
  33. Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy. Chicago: University of Chicago Press.Google Scholar
  34. MWD. (2017). Merrian-Webster Dictionary. Machine. System. Retrieved January 31, 2017,
  35. Nachtomy, O. (2011). Leibniz on artificial and natural machines: Or what it means to remain a machine to the least of its parts. In J. E. H. Smith and O. Nachtomy (eds.), Machines of nature and corporeal substances in leibniz, The New Synthese Historical Library 67, pp. 61–80, Springer 2011, Scholar
  36. Natali, C. (2013). Aitia in Plato and Aristotle. From everyday language to technical vocabulary. In C. Viano, C. Natali, & M. Zingano (Eds.), Aitia I: Les quatre causes d’Aristote: origines et interpretation (pp. 39–73). Leuven: Peeters.Google Scholar
  37. OED. (2017). Oxford English Dictionary. Machine. System. Retrieved January 31, 2017,
  38. Popper, K. R., & Kreuzer, F. (1986). Offene Gesellschaft—Offenes Universum, ein Gespräch über das Lebenswerk des Philosophen. München: Piper.Google Scholar
  39. Quintanilla Navarro, I. (1998). Tecnología y metafísica: ¿hacia el final de una era kantiana? Diálogo Filosófico, 40, 27–44.Google Scholar
  40. RAE. (2017). Diccionario de la Real Academia Española. Máquina. Retrieved January 31, 2017,
  41. Raymont, P. (1998). Leibniz’s distinction between natural and artificial machines. Twentieth World Congress of Philosophy. Boston, MA, August, 1998.
  42. Simon, H. A. (1969). The sciences of the artificial. Cambridge, Massachusetts: MIT Press.Google Scholar
  43. Tatnall, A. & Davey, B. (2016). Towards machine independence: From mechanically programmed devices to the internet of things. In Arthur Tatnall, Christopher Leslie (Eds.), International communities of invention and innovation, IFIP WG 9.7 international conference on the history of computing, HC 2016, Brooklyn, NY, USA, May 25–29, 2016, Revised Selected Papers, vol. 491 of the series IFIP Advances in Information and Communication Technology, (pp. 87–100).Google Scholar
  44. Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.Google Scholar
  45. Turing, A. M. (1948). Intelligent machinery. National Physical Laboratory Report, 1948. In B. Meltzer and D. Michie (Eds.), Machine Intelligence 5, Edinburgh University Press, 1969.Google Scholar
  46. Wikipedia. (2017). Wikipedia. Machine. Retrieved January 31, 2017,

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de InformáticaUniversidad Carlos III de MadridLeganés (Madrid)Spain
  2. 2.Departamento de Teoría e Historia de la EducaciónUniversidad Complutense de MadridMadridSpain

Personalised recommendations