Foundations of Science

, Volume 23, Issue 4, pp 719–737 | Cite as

The Applicability of Mathematics as a Philosophical Problem: Mathematization as Exploration

  • Johannes LenhardEmail author
  • Michael Otte


This paper discerns two types of mathematization, a foundational and an explorative one. The foundational perspective is well-established, but we argue that the explorative type is essential when approaching the problem of applicability and how it influences our conception of mathematics. The first part of the paper argues that a philosophical transformation made explorative mathematization possible. This transformation took place in early modernity when sense acquired partial independence from reference. The second part of the paper discusses a series of examples from the history of mathematics that highlight the complementary nature of the foundational and exploratory types of mathematization.


Mathematization Applicability Exploration Semiotics 


  1. Antonelli, A., & May, R. C. (2000). Frege’s new science. Notre Dame Journal of Formal Logic, 41(3), 242–270.CrossRefGoogle Scholar
  2. Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: Vrin.Google Scholar
  3. Bangu, S. (2012). The applicability of mathematics in science: Indispensability and ontology. Basingstoke: Palgrave Macmillan.Google Scholar
  4. Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74, 47–73.CrossRefGoogle Scholar
  5. Berkeley, G. (1901). Alciphron, or the minute philosopher. Oxford: Clarendon Press.Google Scholar
  6. Berkeley, G. (1989). Philosophical works. London: Everyman’s Library.Google Scholar
  7. Boutroux, P. (1920). L’Ideal scientifique des mathematiciens. Paris: Alcan.Google Scholar
  8. Bradley, R. E., & Sandifer, C. E. (2009). Cauchy’s cours d’analyse algebrique (An Annotated Translation). NY: Springer.Google Scholar
  9. Cassirer, E. (1953). Substance and function (originally 1910 in German). New York: Dover.Google Scholar
  10. Cassirer, E. (1969). The problem of knowledge: Philosophy, science, and history since hegel (5th ed.). New Haven: Yale University Press.Google Scholar
  11. Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.Google Scholar
  12. De Toledo Piza, A. (2003). Heisenberg and Schrödinger. Sao Paulo: Odysseus.Google Scholar
  13. Dedekind, R. (1963). Essays on the theory of numbers. New York: Dover.Google Scholar
  14. Dirac, P. (1966). Lectures on quantum mechanics. New York: Dover.Google Scholar
  15. Engel, F. (Ed.) (1894). Hermann Grassmanns gesammelte mathematische und physikalische Werke. Leipzig: Teubner.Google Scholar
  16. Euler, L. (1748/1983). Einleitung in die Analysis des Unendlichen (Introductio in Analysin Infinitorum) (Vol. I.). Heidelberg: Springer.Google Scholar
  17. Foucault, M. (1973). The order of things. New York, NY: Vintage Books.Google Scholar
  18. Frege, G. (1884). The foundation of arithmetic. Oxford: Basil Blackwell.Google Scholar
  19. Frege, G. (1892). On sense and reference. In P. Geach, & M. Black (Eds.), Translations from the Philosophical Writings of Gottlob Frege, Oxford: Basil Blackwell, 56–78. Cited according to Moore, G. W. (1993), Meaning and Reference, Oxford: Oxford University Press.Google Scholar
  20. Frege, G. (1956). The thought: A logical inquiry. Mind, 65(259), 289–311. (Original publication “Der Gedanke: Eine logische Untersuchung”, in: Beiträge zur Philosophie des Deutschen Idealismus, I, 58–77, 1918).CrossRefGoogle Scholar
  21. Frege, G. (1980). Philosophical and mathematical correspondence. In G. Gabriel, & McGuinness (Eds.), Oxford: Blackwell Publishers.Google Scholar
  22. Frege, G. (1986). Logische Untersuchungen. Göttingen: Vandenhoeck+Ruprecht.Google Scholar
  23. Galileo, G. (1954). Dialogues concerning two new sciences. New York: Dover.Google Scholar
  24. Geach, P., & Black, M. (1970). Translations from the philosophical writings of Gottlob Frege. Oxford: Basil Blackwell.Google Scholar
  25. Heijenoort, Jv. (1967). Logic as calculus and logic as language. Synthese, 17, 324–330.CrossRefGoogle Scholar
  26. Heisenberg, W. (1971a). Physics and beyond: Encounters and conversations. New York: Harper and Row.Google Scholar
  27. Heisenberg, W. (1971b). Schritte über Grenzen. München: Piper.Google Scholar
  28. Heisenberg, W. (1974). Across the frontiers. New York: Harper and Row.Google Scholar
  29. Hersh, R. (1997). What is mathematics really?. Oxford: Oxford University Press.Google Scholar
  30. Hintikka, J. (1997). Lingua Universalis vs. calculus ratiocinator, Selected Papers (Vol. 2). Dordrecht: Kluwer.Google Scholar
  31. Jesseph, D. J. (1993). Berkeley’s philosophy of mathematics. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  32. Kant, I. (1787). Critique of pure reason (“B” refers to pagination of second edition from 1787), P. Guyer (ed.), Cambridge: Cambridge University Press 1998.Google Scholar
  33. Katz, J. (2004). Sense, reference, and philosophy. Oxford: Oxford University Press.Google Scholar
  34. Klein, J. (1968). Greek mathematical thought and the origin of algebra. New York: Dover.Google Scholar
  35. Leibniz, G. W. (1989). Meditations on knowledge, truth, and ideas (1684). In Ariew, R., & Garber, D. (Eds.), Philosophical essays (pp. 23–27). Hackett Publishing Company, Indianapolis.CrossRefGoogle Scholar
  36. Lenhard, J., & Carrier, M. (Eds.) (2017). Mathematics as a tool. Tracing new roles of mathematics in the sciences. Boston Studies in the Philosophy and History of Science 327, New York: Springer.Google Scholar
  37. Lenhard, J., & Otte, M. (2010). Two types of mathematization. In B. Van Kerkhove, J. De Vuyst, & J. P. Van Bendegem (Eds.), Philosophical perspectives on mathematical practice (pp. 301–330). London: College Publications.Google Scholar
  38. Locke, J. (1975). An essay concerning human understanding. Edited with an introduction, critical apparatus and glossary by Peter H. Nidditch, Oxford: Clarendon.Google Scholar
  39. McGinn, C. (2000). Logical properties. Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  41. Peirce, Ch. S., Collected Papers of Charles Sanders Peirce, Volumes I–VI, ed. by Charles Hartshorne and Paul Weiß, Cambridge, Mass. (Harvard UP) 1931–1935, Volumes VII-VIII, ed. by Arthur W. Burks, Cambridge, Mass. (Harvard UP) 1958 (quoted by no. of volume and paragraph).Google Scholar
  42. Pincock, C. (2012). Mathematics and scientific representation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  43. Reichenbach, H. (1951). The rise of scientific philosophy. Berkeley: University of California Press.Google Scholar
  44. Roberts, J. R. (2007). A metaphysics for the mob: The philosophy of George Berkeley. Oxford: Oxford University Press.CrossRefGoogle Scholar
  45. Russell, B. (1956). Introduction to mathematical philosophy. London: Routledge.Google Scholar
  46. Schüling, H. (1969). Die Geschichte der axiomatischen Methode im 16. und beginnenden 17. Jahrhundert. Hildesheim: Olms-Verlag.Google Scholar
  47. Seboek, Th. (1990). Indexicality. The American Journal for Semiotics, 7, 7–28.CrossRefGoogle Scholar
  48. Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge, MA: Harvard University Press.Google Scholar
  49. Waismann, F. (1970). Einführung in das mathematische Denken (3rd ed., originally published 1936). München: DTV.Google Scholar
  50. Weinberg, St. (2017). The trouble with quantum mechanics. The New York Review of Books, LXIV(1), 51–53.Google Scholar
  51. Winkler, K. (1994). Berkeley. Oxford: Clarendon Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Philosophy and Institute for Interdisciplinary ResearchBielefeld UniversityBielefeldGermany
  2. 2.Bielefeld UniversityBielefeldGermany

Personalised recommendations