Foundations of Science

, Volume 22, Issue 3, pp 517–537 | Cite as

Quantum Mechanics in a New Light

  • Ulrich J. Mohrhoff


Although the present paper looks upon the formal apparatus of quantum mechanics as a calculus of correlations, it goes beyond a purely operationalist interpretation. Having established the consistency of the correlations with the existence of their correlata (measurement outcomes), and having justified the distinction between a domain in which outcome-indicating events occur and a domain whose properties only exist if their existence is indicated by such events, it explains the difference between the two domains as essentially the difference between the manifested world and its manifestation. A single, intrinsically undifferentiated Being manifests the macroworld by entering into reflexive spatial relations. This atemporal process implies a new kind of causality and sheds new light on the mysterious nonlocality of quantum mechanics. Unlike other realist interpretations, which proceed from an evolving-states formulation, the present interpretation proceeds from Feynman’s formulation of the theory, and it introduces a new interpretive principle, replacing the collapse postulate and the eigenvalue–eigenstate link of evolving-states formulations. Applied to alternatives involving distinctions between regions of space, this principle implies that the spatiotemporal differentiation of the physical world is incomplete. Applied to alternatives involving distinctions between things, it warrants the claim that, intrinsically, all fundamental particles are identical in the strong sense of numerical identical. They are the aforementioned intrinsically undifferentiated Being, which manifests the macroworld by entering into reflexive spatial relations.


Identical particles Macroscopic objects Measurement problem Nonlocality Quantum mechanics Semantic consistency 


  1. Barrett, J. A. (1999). The quantum mechanics of minds and worlds. Oxford: Oxford University Press.Google Scholar
  2. Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1, 195–200.Google Scholar
  3. Bohm, D. (1952). A suggested interpretation of quantum theory in terms of “hidden” variables. Physical Review, 85, 166–193.CrossRefGoogle Scholar
  4. Bohr, N. (1934). Atomic theory and the description of nature. Cambridge: Cambridge University Press.Google Scholar
  5. Bohr, N. (1935). Quantum mechanics and physical reality. Nature, 136, 65.CrossRefGoogle Scholar
  6. Bohr, N. (1939). The causality problem in atomic physics. In New theories in physics: Conference organized in collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee, Warsaw, May 30th–June 3rd 1938 (pp. 11–30). Paris: International Institute of Intellectual Co-operation.Google Scholar
  7. Busch, P., Lahti, P. J., & Mittelstaedt, P. (1996). The quantum theory of measurement (2nd Revised ed.). Berlin: Springer.Google Scholar
  8. Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.Google Scholar
  9. Clifton, R., & Halvorson, H. (2002). No place for particles in relativistic quantum theories. Philosophy of Science, 69, 1–28. Reprinted in J. Butterfield & H. Halvorson (Eds.), Quantum entanglements: selected papers by Rob Clifton, pp. 225–261. Oxford: Oxford University Press (2004).Google Scholar
  10. Dirac, P. A. M. (1958). The principles of quantum mechanics. Oxford: Clarendon.Google Scholar
  11. Einstein, A. (1948). Quantenmechanik und Wirklichkeit. Dialectica, 2, 320–324.CrossRefGoogle Scholar
  12. Esfeld, M. (2013). Ontic structural realism and the interpretation of quantum mechanics. European Journal for Philosophy of Science, 3, 19–32.CrossRefGoogle Scholar
  13. Falkenburg, B. (2007). Particle metaphysics: A critical account of subatomic reality. Berlin: Springer.Google Scholar
  14. Feynman, R. P. (1985). QED: The strange theory of light and matter. Princeton: Princeton University Press.Google Scholar
  15. Feynman, R. P., Hibbs, A. R., & Styer, D. F. (2005). Quantum mechanics and path integrals (Emended ed.). Mineola: Dover Publications.Google Scholar
  16. French, S. (2011). Identity and individuality in quantum theory. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (summer 2011 edition). Accessed 18 March 2015.
  17. French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical, and formal analysis. Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Ghirardi, G., Rimini, A., & Weber, T. (1986). Unified dynamics for micro and macro systems. Physical Review D, 34, 470–491.CrossRefGoogle Scholar
  19. Heehs, P. (2008). The lives of Sri Aurobindo. New York: Columbia University Press.Google Scholar
  20. Heisenberg, W. (1930). The physical principles of quantum theory. English translation by C. Eckart and F. C. Hoyt. Chicago: University of Chicago Press.Google Scholar
  21. Hilgevoord, J. (1998). The uncertainty principle for energy and time II. American Journal of Physics, 66, 396–402.CrossRefGoogle Scholar
  22. Joos, E., Zeh, H. D., Kiefer, C., Giulini, D. J. W., Kupsch, J., & Stamatescu, I.-O. (2003). Decoherence and the appearance of a classical world in quantum theory (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  23. Kafatos, M. C. (2014). The spookie mind. The Huffington post, URL: Accessed 7 January 2016.
  24. Marchildon, L. (2015). Multiplicity in Everett’s interpretation of quantum mechanics. Studies in History and Philosophy of Modern Physics, 52B, 274–284.CrossRefGoogle Scholar
  25. Maudlin, T. (2011). Quantum non-locality and relativity: Metaphysical intimations of modern physics. Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
  26. Mermin, N. D. (2009). What’s bad about this habit. Physics Today, 62(5), 8–9.CrossRefGoogle Scholar
  27. Mittelstaedt, P. (1998). The interpretation of quantum mechanics and the measurement process. Cambridge: Cambridge University Press.Google Scholar
  28. Mohrhoff, U. (2002). Why the laws of physics are just so. Foundations of Physics, 32(8), 1313–1324.CrossRefGoogle Scholar
  29. Mohrhoff, U. (2009a). Objective probability and quantum fuzziness. Foundations of Physics, 39(2), 137–155.CrossRefGoogle Scholar
  30. Mohrhoff, U. (2009b). Quantum mechanics explained. International Journal of Quantum Information, 7(1), 435–458.CrossRefGoogle Scholar
  31. Mohrhoff, U. (2011). The world according to quantum mechanics: Why the laws of physics make perfect sense after all. Singapore: World Scientific.CrossRefGoogle Scholar
  32. Mohrhoff, U. (2014a). Manifesting the quantum world. Foundations of Physics, 44(6), 641–677.CrossRefGoogle Scholar
  33. Mohrhoff, U. (2014b). Consciousness in the quantum world: An Indian perspective. In A. Corradini & U. Meixner (Eds.), Quantum physics meets the philosophy of mind: New essays on the mind-body relation in quantum-theoretical perspective (pp. 85–97). Berlin/New York: de Gruyter.Google Scholar
  34. Pauli, W. (1933). Die allgemeinen Prinzipien der Wellenmechanik. English Translation: General principles of quantum mechanics. Berlin: Springer, 1980.Google Scholar
  35. Pearle, P. (1989). Combining stochastic dynamical state-vector reduction with spontaneous localization. Physical Review A, 39, 2277–2289.CrossRefGoogle Scholar
  36. Peres, A. (1984). What is a state vector? American Journal of Physics, 52, 644–650.CrossRefGoogle Scholar
  37. Phillips, S. H. (1995). Classical Indian metaphysics. Chicago/La Salle: Open Court.Google Scholar
  38. Saunders, S., Barrett, J., Kent, A., & Wallace, D. (Eds.). (2010). Many worlds? Everett, quantum theory, and reality. Oxford: Oxford University Press.Google Scholar
  39. Schlosshauer, M. (2007). Decoherence and the quantum-to-classical transition. Berlin: Springer.Google Scholar
  40. Schlosshauer, M. (2011). Elegance and enigma: The quantum interviews. Berlin: Springer.CrossRefGoogle Scholar
  41. Schrödinger, E. (1981). The present situation in quantum mechanics. In J. A. Wheeler & W. H. Zurek (Eds.), Quantum theory and measurement (pp. 152–167). Princeton: Princeton University Press. Originally published in 1935.Google Scholar
  42. Sri Aurobindo. (2001). Kena and other upanishads. Pondicherry: Sri Aurobindo Ashram Publication Department.Google Scholar
  43. Sri Aurobindo. (2003). Isha upanishad. Pondicherry: Sri Aurobindo Ashram Publication Department.Google Scholar
  44. Sri Aurobindo. (2005). The life divine. Pondicherry: Sri Aurobindo Ashram Publication Department.Google Scholar
  45. Stapp, H. P. (1975). Bell’s theorem and world process. Nuovo Cimento B, 29, 270–276.CrossRefGoogle Scholar
  46. Stapp, H. P. (2011). Mindful universe: Quantum mechanics and the participating observer. Berlin: Springer.CrossRefGoogle Scholar
  47. Strawson, G. (2006). Realistic monism: Why physicalism entails panpsychism. Journal of Consciousness Studies, 13(10–11), 3–31.Google Scholar
  48. Styer, D. F., Balkin, M. S., Becker, K. M., Burns, M. R., Dudley, C. E., Forth, S. T., et al. (2002). Nine formulations of quantum mechanics. American Journal of Physics, 70, 288–297.CrossRefGoogle Scholar
  49. Von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. English Translation: Mathematical foundations of quantum mechanics. Princeton: Princeton University Press, 1955.Google Scholar
  50. Von Weizsäcker, C. F. (2006). The structure of physics. Berlin: Springer.Google Scholar
  51. Wallace, D. (2008). The quantum measurement problem: State of play. In D. Rickles (Ed.), The Ashgate companion to contemporary philosophy of physics (pp. 16–98). Aldershot, UK: Ashgate.Google Scholar
  52. Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75, 715–775.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Sri Aurobindo International Centre of EducationPondicherryIndia

Personalised recommendations