Foundations of Science

, Volume 22, Issue 3, pp 539–555 | Cite as

The Mathematical Intelligencer Flunks the Olympics

  • Alexander E. Gutman
  • Mikhail G. KatzEmail author
  • Taras S. Kudryk
  • Semen S. Kutateladze


The Mathematical Intelligencer recently published a note by Y. Sergeyev that challenges both mathematics and intelligence. We examine Sergeyev’s claims concerning his purported Infinity computer. We compare his grossone system with the classical Levi-Civita fields and with the hyperreal framework of A. Robinson, and analyze the related algorithmic issues inevitably arising in any genuine computer implementation. We show that Sergeyev’s grossone system is unnecessary and vague, and that whatever consistent subsystem could be salvaged is subsumed entirely within a stronger and clearer system (IST). Lou Kauffman, who published an article on a grossone, places it squarely outside the historical panorama of ideas dealing with infinity and infinitesimals.


Mathematical Intelligencer Nonstandard Analysis Transfer Principle Conservative Extension Algorithmic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Rob Ely for helpful suggestions. We thank the anonymous referee for Foundations of Science for helpful comments. M. Katz was partially funded by the Israel Science Foundation Grant No. 1517/12.


  1. Avigad, J. (2005). Weak theories of nonstandard arithmetic and analysis. Reverse mathematics, Lecture notes in logic 21. La Jolla, CA: Association for Symbolic Logic.Google Scholar
  2. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Schaps, D., Sherry, D., & Shnider, S. (2013). Is mathematical history written by the victors? Notices of the American Mathematical Society, 60(7), 886–904. and arXiv:1306.5973
  3. Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., Nowik, T., Sherry, D., & Shnider, S. (2014). Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, 61(8), 848–864. and arxiv:1407.0233.
  4. Benci, V., & Di Nasso, M. (2003). Numerosities of labelled sets: A new way of counting. Advances in Mathematics, 173(1), 50–67.CrossRefGoogle Scholar
  5. Borovik, A., & Katz, M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. doi: 10.1007/s10699-011-9235-x.CrossRefGoogle Scholar
  6. Bradley, R., & Sandifer, C. (2009). Cauchy’s Cours d’analyse. An annotated translation. Sources and studies in the history of mathematics and physical sciences. New York: Springer.Google Scholar
  7. Calude, C., & Dinneen, M. (Eds). (2015). Unconventional Computation and Natural Computation. In 14th International Conference, UCNC 2015, Auckland, New Zealand August 30–September 3, 2015, Proceedings, Springer.Google Scholar
  8. Dauben, J., Guicciardini, N., Lewis, A., Parshall, K., & Rice, A. (2015). Ivor Grattan–Guinness (June 23, 1941–December 12, 2014). Historia Mathematica, 42(4), 385–406.CrossRefGoogle Scholar
  9. Day, P. (2006). Review of “Sergeyev, Yaroslav D. ‘Mathematical foundations of the infinity computer’. Annales Universitatis Mariae Curie-Sklodowska. Sectio AI. Informatica, 4, 20–33”.
  10. Goedel, K. (1938). The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences of the United States of America (National Academy of Sciences), 24(12), 556–557.CrossRefGoogle Scholar
  11. Gutman, A., & Kutateladze, S. (2008). On the theory of the grossone [(Russian) Sibirskii Matematicheskii Zhurnal 49(5), 1054–1063; translation in]. Siberian Mathematical Journal, 49(5), 835–841.CrossRefGoogle Scholar
  12. Henson, C. W., Kaufmann, M., & Keisler, H. J. (1984). The strength of nonstandard methods in arithmetic. Journal of Symbolic Logic, 49(4), 1039–1058.CrossRefGoogle Scholar
  13. Henson, C. W., & Keisler, H. J. (1986). On the strength of nonstandard analysis. Journal of Symbolic Logic, 51(2), 377–386.CrossRefGoogle Scholar
  14. Hewitt, E. (1948). Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society, 64, 45–99.CrossRefGoogle Scholar
  15. Iudin, D., Sergeyev, Y., & Hayakawa, M. (2012). Interpretation of percolation in terms of infinity computations. Applied Mathematics and Computation, 218(16), 8099–8111.CrossRefGoogle Scholar
  16. Kanovei, V., Katz, K., Katz, M., & Schaps, M. (2015). Proofs and retributions, or: Why Sarah can’t take limits. Foundations of Science, 20(1), 1–25. doi: 10.1007/s10699-013-9340-0 and
  17. Kanovei, V., Katz, K., Katz, M., & Sherry, D. (2015). Euler’s lute and Edwards’ oud. The Mathematical Intelligencer, 37(4), 48–51. doi: 10.1007/s00283-015-9565-6 and arxiv:1506.02586.
  18. Kanovei, V., Katz, M., & Mormann, T. (2013). Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. Foundations of Science, 18(2), 259–296.CrossRefGoogle Scholar
  19. Katz, K., & Katz, M. (2011). Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica 56(2), 223–302. arxiv:1110.5456.
  20. Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. doi: 10.1007/s10699-011-9223-1 and arxiv:1104.0375.
  21. Katz, M., & Kutateladze, S. (2015). Edward Nelson (1932–2014). The Review of Symbolic Logic, 8(3), 607–610. doi: 10.1017/S1755020315000015 and arxiv:1506.01570.
  22. Katz, M., & Leichtnam, E. (2013). Commuting and noncommuting infinitesimals. American Mathematical Monthly, 120(7), 631–641. doi: 10.4169/amer.math.monthly.120.07.631 and arxiv:1304.0583.
  23. Katz, M., & Sherry, D. (2012). Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), 1550–1558. and arxiv:1211.7188.
  24. Katz, M., & Sherry, D. (2013). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis, 78(3), 571–625. doi: 10.1007/s10670-012-9370-y and arxiv:1205.0174.
  25. Kauffman, L., & Lins, S. (1994). Temperley-Lieb recoupling theory and invariants of 3-manifolds. Annals of mathematics studies (Vol. 134). Princeton, NJ: Princeton University Press.Google Scholar
  26. Kauffman, L. (2015a). Infinite computations and the generic finite. Applied Mathematics and Computation, 255, 25–35.CrossRefGoogle Scholar
  27. Kauffman, L. (2015b). MathOverflow answer.
  28. Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach (2nd ed.). Prindle, Weber & Schimidt, Boston.
  29. Kreinovich, V. (2003). Review of “Sergeyev, Yaroslav D. Arithmetic of infinity. Edizioni Orizzonti Meridionali, Cosenza, 2003”.
  30. Kreisel, G. (1969). Axiomatizations of nonstandard analysis that are conservative extensions of formal systems for classical standard analysis. Applications of model theory to algebra, analysis, and probability (International Symposium, Pasadena, CA, 1967) (pp. 93–106) Holt, Rinehart and Winston, New York.Google Scholar
  31. Kutateladze, S. (2011). Letter to the Editor. On the Grossone and the infinity computer. Newsletter of the European Mathematical Society, 79, 60.
  32. Lolli, G. (2015). Metamathematical investigations on the theory of Grossone. Applied Mathematics and Computation, 255, 3–14.CrossRefGoogle Scholar
  33. Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.Google Scholar
  34. Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 1165–1198.CrossRefGoogle Scholar
  35. Robinson, A. (1961). Non-standard analysis. Nederl Akad Wetensch Proceedings Series A 64 = Indagationes Mathematicae, 23, 432–440 [reprinted in Selected Works, see item (Robinson 1979), pp. 3–11]Google Scholar
  36. Lightstone, A., & Robinson, A. (1975). Nonarchimedean fields and asymptotic expansions. North-Holland Mathematical Library (Vol. 13). Amsterdam-Oxford: North-Holland Publishing Co., New York: American Elsevier Publishing Co., Inc.Google Scholar
  37. Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions by W. A. J. Luxemburg and S. Körner. Yale University Press, New Haven, CT.Google Scholar
  38. Sergeyev, Y. (2003). Arithmetic of infinity. Cosenza: Edizioni Orizzonti Meridionali.Google Scholar
  39. Sergeyev, Y. (2007). Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons and Fractals, 33, 50–75.CrossRefGoogle Scholar
  40. Sergeyev, Y. (2013). Solving ordinary differential equations on the infinity computer by working with infinitesimals numerically. Applied Mathematics and Computation, 219(22), 10668–10681.CrossRefGoogle Scholar
  41. Sergeyev, Y. (2015a). The Olympic medals ranks, lexicographic ordering, and numerical infinities. The Mathematical Intelligencer, 37(2), 4–8.CrossRefGoogle Scholar
  42. Sergeyev, Y. (2015c). Letter to the editor. The Mathematical Intelligencer, 37(4), 2–3.CrossRefGoogle Scholar
  43. Sergeyev, Y. (2016). The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area. Communications in Nonlinear Science and Numerical Simulation, 31(1–3), 21–29.CrossRefGoogle Scholar
  44. Shamseddine, K. (2015). Analysis on the Levi-Civita field and computational applications. Applied Mathematics and Computation, 255, 44–57.CrossRefGoogle Scholar
  45. Skolem, T. (1933). Über die Unmöglichkeit einer vollständigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems. Norsk Mat. Forenings Skr., II. Series No. 1/12, pp. 73–82.Google Scholar
  46. Skolem, T. (1934). Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae, 23, 150–161.CrossRefGoogle Scholar
  47. Skolem, T. (1955). Peano’s axioms and models of arithmetic. Mathematical interpretation of formal systems (pp. 1–14). Amsterdam: North-Holland Publishing.Google Scholar
  48. Tall, D. (1979). The calculus of Leibniz–An alternative modern approach. Mathematical Intelligencer, 2(1), 54–55.CrossRefGoogle Scholar
  49. Tao, T. (2014). Hilbert’s fifth problem and related topics. Graduate studies in mathematics (Vol. 153). Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  50. Tarski, A. (1930). Une contribution à la théorie de la mesure. Fundamenta Mathematicae, 15, 42–50.CrossRefGoogle Scholar
  51. Vakil, N. (2012). Interpreting Sergeyev’s numerical methodology within a hyperreal number system.
  52. Zlatoš, P. (2009). Review of (Gutman & Kutateladze 2008).

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alexander E. Gutman
    • 1
  • Mikhail G. Katz
    • 2
    Email author
  • Taras S. Kudryk
    • 3
  • Semen S. Kutateladze
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia
  2. 2.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  3. 3.Department of MathematicsLviv National UniversityLvivUkraine

Personalised recommendations