Foundations of Science

, Volume 22, Issue 1, pp 39–124 | Cite as

Big Historical Foundations for Deep Future Speculations: Cosmic Evolution, Atechnogenesis, and Technocultural Civilization

  • Cadell Last


Big historians are attempting to construct a general holistic narrative of human origins enabling an approach to studying the emergence of complexity, the relation between evolutionary processes, and the modern context of human experience and actions. In this paper I attempt to explore the past and future of cosmic evolution within a big historical foundation characterized by physical, biological, and cultural eras of change. From this analysis I offer a model of the human future that includes an addition and/or reinterpretation of technological singularity theory with a new theory of biocultural evolution focused on the potential birth of technological life: the theory of atechnogenesis. Furthermore, I explore the potential deep futures of technological life and extrapolate towards two hypothetical versions of an ‘Omega Civilization’: expansion and compression.


Big history Anthropology Futures Evolution Singularity Philosophy 



I would like to thank John Smart, Clément Vidal, John Stewart, David Weinbaum (Weaver), Viktoras Veitas, Marios Kyriazis, Claudio Flores Martinez, David Christian and all anonymous reviewers for their thoughtful and constructive feedback. I would like to thank the Global Brain Institute (GBI) and the Vrije Universiteit Brussels (VUB) for support and the opportunity to develop and share these ideas with the world, and in particular, to present these ideas at the International Big History Association (IBHA) 2014. I would also like to thank the authors I cited, who provided me with a wealth of data and a playground of brilliant concepts and theories, without which I would have never been able to produce this work.


  1. Abrams, M. H. (1963). English romanticism: The spirit of the age. Romanticism Reconsidered, 26–72.Google Scholar
  2. Adams, H. (1909). The rate of phase applied to history. The Degradation of Democratic Dogma, 267–311.Google Scholar
  3. Adams, F., & Laughlin, G. (1997). A dying universe: The long-term fate and evolution of astrophysical objects. Review of Modern Physics, 69, 337.CrossRefGoogle Scholar
  4. Adams, F., & Laughlin, G. (1999). The five ages of the universe: Inside the physics of eternity. New York: The Free Press.Google Scholar
  5. Ade, P. A. R., Aghanim, N., Alves, M. I. R., Armitage-Caplan, C., Arnaud, M., Ashdown, M., et al. (2013). Planck 2013 results. I. Overview of products and scientific results. ArXiv, 2013arXiv1303.5062P.Google Scholar
  6. Aerts, D., Apostel, L., De Moor, B., Hellemans, S., Maex, E., Van Belle, H., et al. (1994). Worldviews: From fragmentation to integration. Brussels: VUB Press. Accessed February 19, 2015.
  7. Aguilar, W., Santamaria-Bonfil, G., Froese, T., & Gershenson, C. (2014). The past, present, and future of artificial life. Frontiers in Robotics and AI, 1, 1–15.CrossRefGoogle Scholar
  8. Aldous, D. J. (2010). The great filter, branching histories and unlikely events. Mathematical Scientist, 1–14.Google Scholar
  9. Anderson, P. W. (1972). “More is different”: Broken symmetry and the nature of the hierarchical structure of science. Science, 177, 393–396.CrossRefGoogle Scholar
  10. Anderson, P. (1998). The origins of postmodernity. London: Verso.Google Scholar
  11. Anderson, J. R., GIllies, A., & Lock, L. C. (2010). Pan thanatology. Current Biology, 20, R349–R351.CrossRefGoogle Scholar
  12. Annis, J. (1999). Placing a limit on star-fed Kardashev type III civilizations. Journal of the British Interplanetary Society, 52, 33–36.Google Scholar
  13. Antonov, A. A. (2011). From artificial intelligence to human super-intelligence. International Journal of Computer Information Systems, 2, 1–6.Google Scholar
  14. Armstrong, S. (2014). Smarter than us: The rise of machine intelligence. Machine Intelligence Research Institute.Google Scholar
  15. Armstrong, S., & Sandberg, A. (2013). Eternity in six hours: Intergalactic spreading of intelligent life and sharing the fermi paradox. Acta Astronautica, 89, 1–13.CrossRefGoogle Scholar
  16. Armstrong, S., & Sotala, K. (2012). How we’re predicting AI—Or failing to (p. 52). Beyond, AI: Artificial Dreams.Google Scholar
  17. Asimov, I. (1983). Our future in the cosmos—Space. In J. Burke, J. Bergman, & I. Asimov (Eds.), The impact of science on society (pp. 79–96). Washington: NASA Scientific and Technical Information Branch.Google Scholar
  18. Aunger, R. (2007a). Major transitions in ‘big’ history. Technological Forecasting and Social Change, 74, 1137–1163.CrossRefGoogle Scholar
  19. Aunger, R. (2007b). A rigorous periodization of ‘big’ history. Technological Forecasting and Social Change, 74, 1164–1178.CrossRefGoogle Scholar
  20. Bacon, F. 1620. (2000). Novum organum scientiarum. L. Jardine, & M. Silverthorne (Eds.), Cambridge: Cambridge University Press.Google Scholar
  21. Bacon, F. 1626. (1998). New Atlantis. An electronic classics series publication. Accessed June 4, 2014.
  22. Bada, J. L., & Lazcano, A. (2009). The origin of life. In M. Ruse & J. Travis (Eds.), Evolution: The first four billion years. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
  23. Baird, F. E., & Kaufmann, W. A. (2008). Philosophical classics: From Plato to Derrida. Upper Saddle River.Google Scholar
  24. Baker, D. (2013). 10500: The Darwinian algorithm and a possible candidate for a ‘Unifying Theme’ of big history. Evolution: Development within Big History, Evolutionary and World-System Paradigms, 235–248.Google Scholar
  25. Barrat, J. (2013). Our final invention: Artificial intelligence and the end of the human era. New York: St. Martin’s Press.Google Scholar
  26. Barrow, J. (1998). Impossibility: The limits of science and the science of limits. Oxford: Oxford University Press.Google Scholar
  27. Baum, S., & Goertzel, B. (2011). How long until human-level AI? Results from an expert assessment. Technological Forecasting and Social Change, 78, 185–195.CrossRefGoogle Scholar
  28. Bedau, M. A., McCaskill, J. S., Packard, N. H., Parke, E. C., & Rasmussen, S. R. (2009). Living technology: Exploiting life’s principles in technology. Artificial Life, 16, 89–97.CrossRefGoogle Scholar
  29. Bedau, M. A., McCaskill, J. S., Packard, N. H., Parke, E. C., & Rasmussen, S. R. (2013). Introduction to recent developments in living technology. Artificial Life, 6, 363–376.CrossRefGoogle Scholar
  30. Beech, M. (2008). Rejuvenating the sun and avoiding other global catastrophes. Berlin: Springer.Google Scholar
  31. Benedikter, R. (2015). The age of transhumanist politics has begun. The leftist review: Commentaries on politics, science, philosophy, and religion. Accessed April 28, 2015.
  32. Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2012). Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Final maps and results. arXiv: Astrophysics: Cosmology and Nongalactic Astrophysics.Google Scholar
  33. Bergson, H. (1911). Creative evolution. New York: Henry Holt and Company.Google Scholar
  34. Bermúdez, J. L. (2009). Mindreading in the animal kingdom. In R. W. Lurz (Ed.), The philosophy of animal minds (pp. 145–164). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Billings, L. (2013). Five billion years of solitude. New York: Penguin Group.Google Scholar
  36. Biro, D., Humle, T., Koops, K., Sousa, C., Hayashi, M., & Matsuzawa, T. (2010). Chimpanzee mothers at Bossou, Guinea carry the mummified remains of their dead infants. Current Biology, 20, R351–R352.CrossRefGoogle Scholar
  37. Blackford, R., & Broderick, D. (Eds.). (2014). Intelligence unbound: The future of uploaded and machine minds. New York: Wiley.Google Scholar
  38. Blainey, M. (2010). The future of a discipline: Considering the ontological/methodological future of the anthropology of consciousness part II/towards an ethnometaphysics of consciousness: Suggested adjustments in SAC’s quest to reroute the main(stream). Anthropology of Consciousness, 21, 113–138.CrossRefGoogle Scholar
  39. Blake, W. 1810. (1988). In D. V. Erdman, & H. Bloom (Eds.), The complete poetry & prose of William Blake. New York: Random House.Google Scholar
  40. Bloecker, T. (1995). Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. Astronomy and Astrophysics, 299, 755.Google Scholar
  41. Bloom, Ho. (2000). Global brain: The evoluton of mass mind from the Big Bang to the 21st century. New York: Wiley.Google Scholar
  42. Boesch, C. (2003). Is culture a golden barrier between human and chimpanzee? Evolutionary Anthropology, 12, 82–91.CrossRefGoogle Scholar
  43. Boltzmann, L. 1886. (1974). The second law of thermodynamics. Populare Schriften, Essay 3, address to a formal meeting of the Imperial Academy of Science. Theoretical physics and philosophical problems (S. G. Brush, Trans.). Boston: Reidel.Google Scholar
  44. Boothroyd, A. I., & Juliana Sackmann, I. (1999). The CNO isotopes: Deep circulation in red giants and first and second dredge-up. The Astrophysical Journal, 510, 232.CrossRefGoogle Scholar
  45. Borowski, S. K. (1987). Comparison of fusion/antiproton propulsion systems. NASA technical memorandum 107030. NASA. pp. 5–6.Google Scholar
  46. Bostrom, N. (2003). Astronomical waste: The opportunity cost of delayed technological development. Utilitas, 15, 308–314.CrossRefGoogle Scholar
  47. Bostrom, N. (2005). A history of transhumanist thought. Journal of Evolution & Technology, 14, 1–25.Google Scholar
  48. Bostrom, N. (2006). Welcome to a world of exponential change. Demos, 40–50.Google Scholar
  49. Bostrom, N. (2009). Why I want to be a posthuman when I grow up. Medical Enhancement and Posthumanity, 2, 107–136.CrossRefGoogle Scholar
  50. Bostrom, N. (2010). Where are they? Why I hope the search for extraterrestrial life finds nothing. MIT Technology Review, 72–77.Google Scholar
  51. Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.Google Scholar
  52. Bradford, T. (2006). Solar revolution: The economic transformation of the global energy industry. Cambridge: MIT Press.Google Scholar
  53. Brent Tulley, R., Courtois, H., Hoffman, T., & Pomarède, D. (2014). The Laniakea supercluster. Nature, 513, 71–73.CrossRefGoogle Scholar
  54. Breuer, T., Ndoundou-Hockemba, M., & Fishlock, V. (2005). First observation of tool use in wild gorillas. PLoS One, 3, e380.CrossRefGoogle Scholar
  55. Brin, D. (1983). The great silence: The controversy concerning extraterrestrial intelligent life. Quarterly Journal of the Royal Astronomical Society, 24, 283–309.Google Scholar
  56. Broderick, D. (2014). Introduction I: Machines of loving grace (let’s hope). In R. Blackford & D. Broderick (Eds.), Intelligence unbound: The future of uploaded and machine minds (pp. 1–10). New York: Wiley.Google Scholar
  57. Brown, N. O. (1959). Life against death: The psychoanalytical meaning of history. Middleton: Wesleyan University.Google Scholar
  58. Brown, N. O. (1967). Love’s body. Berkeley: University of California Press.Google Scholar
  59. Brown, N. O. (1981). The challenge of Islam: The prophetic tradition. New Pacific Press.Google Scholar
  60. Brownlee, D. E. (2010). Planetary habitability on astronomical time scales. In C. J. Schrijver & G. L. Siscoe (Eds.), Heliophysics: Evolving solar activity and the climates of space and earth (pp. 79–98). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  61. Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York: W.W. Norton.Google Scholar
  62. Burtsev, M., & Turchin, P. (2006). Evolution of cooperative strategies from first principles. Nature, 440, 1041–1044.CrossRefGoogle Scholar
  63. Butler, S. 1887. (2008). Luck or cunning? PTY, Ltd.Google Scholar
  64. Caldwell, C. A., & Millen, A. E. (2008). Studying cumulative cultural evolution in the laboratory. Philosophical Transactions of the Royal Society: Biological Sciences, 363, 3529–3539.CrossRefGoogle Scholar
  65. Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12, 187–192.CrossRefGoogle Scholar
  66. Campbell, P. (2014). Amputee makes history with APL’s modular prosthetic limb. John Hopkins: Applied Physics Laboratory. Accessed April 27, 2015.
  67. Carrigan, R. A., Jr. (2012). Is interstellar archaeology possible? Acta Astronautica, 78, 121–126.CrossRefGoogle Scholar
  68. Carroll, M. (2014). Part human, part machine, cyborgs are becoming a reality. Newsweek. Accessed March 1, 2015.
  69. Cassan, A., Kubas, D., Beaulieu, J.-P., Dominik, M., Horne, K., Greenhill, J., et al. (2012). One or more bound planets per Milky Way star from microlensing observations. Nature, 481, 167–169.CrossRefGoogle Scholar
  70. Cave, S. (2012). Immortality: The question to live forever and how it drives civilization. New York: Crown Publishers.Google Scholar
  71. Chaisson, E. (1981). Cosmic dawn: The origins of matter and life. Boston: Little, Brown.Google Scholar
  72. Chaisson, E. (2001). Cosmic evolution: The rise of complexity in nature. Cambridge: Harvard University Press.Google Scholar
  73. Chaisson, E. (2003). A unifying concept for astrobiology. International Journal of Astrobiology, 2, 91–101.CrossRefGoogle Scholar
  74. Chaisson, E. (2005). Epic of evolution: Seven ages of the cosmos. New York: Columbia University.CrossRefGoogle Scholar
  75. Chaisson, E. (2009a). Cosmic evolution: State of the science. In: S. J. Dick, & M. L. Lupisella (Eds.), Cosmos & culture: Cultural evolution in a cosmic context (pp. 3–24).Google Scholar
  76. Chaisson, E. (2009b). Exobiology and complexity. Encyclpedia of Complexity Science, 3267–3284.Google Scholar
  77. Chaisson, E. (2011a). Energy rate density as a complexity metric and evolutionary driver. Complexity, 16, 27–40.CrossRefGoogle Scholar
  78. Chaisson, E. (2011b). Energy rate density. II. Probing further a new complexity metric. Complexity, 17, 44–63.CrossRefGoogle Scholar
  79. Chaisson, E. (2012). Researching and teaching cosmic evolution. In Rodriguez, Grinin, & Koyotayev (Eds.), From Big Bang to global civilization. Berkeley: University of California Press.Google Scholar
  80. Chaisson, E. J. (2013). Using complexity science to search for unity in the natural sciences. In C. H. Lineweaver, P.C.W. Davies, & M. Ruse (Eds.), Complexity and the arrow of time (pp. 68–79). New York: Cambridge University Press.Google Scholar
  81. Chalmers, D. (2010). The singularity: A philosophical analysis. Journal of Consciousness Studies, 17, 7–65.Google Scholar
  82. Chambers, R. (1844). Vestiges of the national history of creation. London: Churchill.Google Scholar
  83. Chorost, M. (2011). World wide mind: The coming integration of humanity. New York: Simon and Schuster.Google Scholar
  84. Christian, D. (1991). The case for ‘big history’. Journal of World History, 2, 223–238.Google Scholar
  85. Christian, D. (2004). Maps of time: An introduction to big history. Berkeley: University Press.Google Scholar
  86. Ćirković, M. M. (2003). A resource letter on physical eschatology. American Journal of Physics, 71, 122–133.CrossRefGoogle Scholar
  87. Ćirković, M. M. (2004). Forecast for the next eon: Applied cosmology and the long-term fate of intelligent beings. Foundations of Physics, 34, 239–261.CrossRefGoogle Scholar
  88. Ćirković, M. M. (2009). Fermi’s paradox: The last challenge for copernicanism? Serbian Astronomical Journal, 178, 1–39.CrossRefGoogle Scholar
  89. Clarke, A. C. (1950). Interplanetary flight: An introduction to astronautics. New York: Harper.Google Scholar
  90. Clarke, A. C. (1953). Childhood’s end. London: Ballantine Books.Google Scholar
  91. Clarke, A. C. (1973). Profiles of the future: An inquiry into the limits of possibility. New York: Harper & Row.Google Scholar
  92. Cloud, P. (1978). Cosmos, Earth, and man: A short history of the universe. New Haven: Yale University Press.Google Scholar
  93. Cole-Turner, R. (2012). The singularity and the rapture: Transhumanist and popular Christian views of the future. Zygon, 47, 777–796.CrossRefGoogle Scholar
  94. Condorcet, N. (1795). Outlines of an historical view of the progress of the human mind. Philadelphia: Lang and Uftick.Google Scholar
  95. Conkey, M. (1997). Beyond art: Pleistocene image and symbol. San Francisco: University of California Press.Google Scholar
  96. Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, A., Wielandt, D., & Ivanova, M. A. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–655.CrossRefGoogle Scholar
  97. Copernicus, N. (1543). On the revolutions of the heavenly spheres. Nuremberg: Johannes Petreius.Google Scholar
  98. Corning, P. (2002a). The re-emergence of “Emergence”. Complexity, 7, 18–30.CrossRefGoogle Scholar
  99. Corning, P. (2002b). Thermoeconomics: Beyond the second law. Journal of Bioeconomics, 1945, 57–88.CrossRefGoogle Scholar
  100. Corning, P. (2005). Holistic Darwinism: Synergy, cybernetics, and the bioeconomics of evolution. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  101. Corning, P. (2007). Control information theory: The “Missing Link” in the science of cybernetics. Systems Research and Behavioral Science, 24, 297–311.CrossRefGoogle Scholar
  102. Corning, P. (2014). Systems theory and the role of synergy in the evolution of living systems. Systems Research and Behavioral Science, 31, 181–196.CrossRefGoogle Scholar
  103. Cottey, A. (2014). Technologies, culture, work, basic income and maximum income. AI & Society, 29, 249–257.CrossRefGoogle Scholar
  104. Cowen, R. (2012). Andromeda on collision course with the Milky Way. Nature,. doi: 10.1038/nature.2012.10765.Google Scholar
  105. Cox, T. J., & Loeb, A. (2007). The collision between the Milky Way and Andromeda. Monthly Notices of the Royal Astronomical Society, 386, 461–474.CrossRefGoogle Scholar
  106. Crane, L. (1994). Possible implications of the quantum theory of gravity. arXiv preprint: hep-th/9402104.Google Scholar
  107. Darwin, E. 1794. (1809). Zoonomia; or the laws of organic life. Boston: Thomas & Andrews.Google Scholar
  108. Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.CrossRefGoogle Scholar
  109. Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.CrossRefGoogle Scholar
  110. Davies, P. (2010). The Eerie silence: Are we alone in the universe? Houghton Mifflin Harcourt.Google Scholar
  111. Davies, P. (2013). Directionality principles from cancer to cosmology. In: C. H. Lineweaer, P. C. W. Davies, & M. Ruse (Eds.), Complexity and the arrow of time (pp. 19–41).Google Scholar
  112. Dawkins, R. (2006). The god delusion. New York: Houghton Mifflin.Google Scholar
  113. de Grey, A. (2004). Escape velocity: Why the prospect of extreme human life extension matters now. PLoS Biology, 2, e187.CrossRefGoogle Scholar
  114. de Grey, A. (2015). The singularity and the Methuselarity: Similarities and differences. In B. Goertzel, & T. Goertzel (Eds.), The end of the beginning: Life, society, and economy on the brink of singularity (pp. 151–169). Humanity+ Press.Google Scholar
  115. Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York: W.W, Norton.Google Scholar
  116. Deacon, T. W. (2011). Incomplete nature: How mind emerged from matter. New York: W.W. Norton.Google Scholar
  117. Deutsch, D. (2011). The beginning of infinity: Explanations that transform the world. New York: Penguin Books Limited.Google Scholar
  118. Deutsch, D. (2013). Constructor theory. Synthese, 190, 4331–4359.CrossRefGoogle Scholar
  119. Diamandis, P., & Kotler, S. (2011). Abundance: The future is better than you think. New York: Free Press.Google Scholar
  120. Dick, S. (2000). Interstellar humanity. Futures, 32, 555–567.CrossRefGoogle Scholar
  121. Dick, S. (2008). The postbiological universe. Acta Astronautica, 62, 499–504.CrossRefGoogle Scholar
  122. Dick, S. (2009a). The postbiological universe and our future in space. Futures, 41, 578–580.CrossRefGoogle Scholar
  123. Dick, S. (2009b). Cosmic evolution: History, culture, and human destiny. In S. J. Dick, & M. L. Lupisella, (Eds.), Cosmos & culture: Cultural evolution in a cosmic context (pp. 25–62).Google Scholar
  124. Dick, S. (2009c). Bringing culture to cosmos: The postbiological universe. In S. J. Dick, & M. L. Lupisella (Eds.), Cosmos & culture: Cultural evolution in a cosmic context (pp. 463–487).Google Scholar
  125. Dick, S. J., & Lupisella, M. L. (Eds.). (2009). Cosmos & culture: Cultural evolution in a cosmic context. Washington: NASA.Google Scholar
  126. Drexler, E. (2013). Radical abundance: How a revolution in nanotechnology will change civilization. New York: Public Affairs.Google Scholar
  127. Duhaime-Ross, A. (2014). Watch a man control two robotic prosthetic arms with his mind. The Verge. Accessed March 1, 2015.
  128. Dunbar, R. (2009). Why only humans have language. In R. Botcha & C. Knight (Eds.), The prehistory of language (pp. 1–26). Oxford: Oxford University Press.Google Scholar
  129. Dvorsky, G. (2014). Is it time to give up on the singularity? io9. Accessed August 19, 2014.
  130. Dyson, F. (1966). The search for extraterrestrial technology. Perspectives in Modern Physics, 641–655.Google Scholar
  131. Dyson, F. (1971). Energy in the universe. In Energy and power (a scientific American book). San Francisco: W.H. Freeman.Google Scholar
  132. Dyson, F. (1979). Time without end: Physics and biology in an open universe. Reviews of Modern Physics, 51, 447–460.CrossRefGoogle Scholar
  133. Dyson, G. (1998). Darwin among the machines: The evolution of global intelligence. New York: Penguin Books.Google Scholar
  134. Emerson, R. W. (1836). Nature. Boston: Houghton Mifflin & Company.Google Scholar
  135. Farhi, E., Guth, A. H., & Guven, J. (1990). Is it possible to create a universe in the laboratory by quantum tunneling? Nuclear Physics B, 339, 417–490.CrossRefGoogle Scholar
  136. Ferguson, W. (2012). Cyborg tissue is half living cells, half electronics. New Scientist. Accessed March 1, 2015.
  137. Fernàndez, N., Maldonado, C., & Gershenson, C. (2013). Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis (pp. 1–35). arXiv: 1304.184v3.Google Scholar
  138. Feuerbach, L. 1841. (2008). The essence of christianity. MSAC Philosophy Group.Google Scholar
  139. Fiske, J. (1874). Outlines of a cosmic philosophy: Based on the doctrine of evolution with criticisms on the positive philosophy. Boston: Houghton Mifflin.Google Scholar
  140. Flores Martinez, C. (2014). SETI in the light of cosmic convergent evolution. Acta Astronautica,. doi: 10.1016/j.actaastro.2014.08.013.Google Scholar
  141. Ford, M. (2009). Lights in the tunnel: Automation, accelerating technology and the economy of the future. Acculant Publishing.Google Scholar
  142. Ford, M. (2015). Rise of the robots: Technology and the threat of a jobless future. New York: Basic Books.Google Scholar
  143. Fragaszy, D. M., Izar, P., Visalberghi, E., Ottoni, E. B., & De Oliveira, M. G. (2004). Wild capuchin monkeys (Cebus libidinosus) use anvils and stone pounding tools. American Journal of Primatology, 64, 359–366.CrossRefGoogle Scholar
  144. Franck, S., Bounama, C., & von Bloh, W. (2005). Causes and timing of future biosphere extinction. Biogeosciences Discussions, 2, 1665–1679.CrossRefGoogle Scholar
  145. Franklin, D., & Andrews, J. (Eds.). (2012). Megachange: The world in 2050. New York: Wiley.Google Scholar
  146. Freeberg, T. M. (1998). The cultural transmission of courtship patterns in cowbirds, Molothrus ater. Animal Behaviour, 56, 1063–1073.CrossRefGoogle Scholar
  147. Freeberg, T. M. (2000). Culture and courtship in vertebrates: A review of social learning and transmission of courtship systems and mating patterns. Behavioral Processes, 51, 177–192.CrossRefGoogle Scholar
  148. Freitas, R. A. 1975–79. (2008). Xenology: An introduction to the scientific study of extraterrestrial life, intelligence, and civilization. Sacramento, CA: Xenology Research Institute.Google Scholar
  149. Freitas, R. A. (1999). Nanomedicine (vol. 1). Landes Bioscience.Google Scholar
  150. Freitas, R. A. (2005). Nanotechnology, nanomedicine and nanosurgery. International Journal of Surgery, 3, 243–246.CrossRefGoogle Scholar
  151. Freud, S. 1920. (2003). Beyond the pleasure principle and other writings. Penguin Classics.Google Scholar
  152. Frey, T. (2011). Communicating with the future: How re-engineering will alter the master code of our future. CGXPublishing.Google Scholar
  153. Frey, C. B., & Osborne, M. A. (2013). The future of employment: How susceptible are jobs to computerization? Oxford Martin Programme on the Impacts of Future Technology, 1–72.Google Scholar
  154. Frye, N. (1947). Fearful symmetry: A study of William Blake. Toronto: Princeton University Press.Google Scholar
  155. Frye, N. (1970). The road of excess. In H. Bloom. (Ed.), Romanticism and consciousness: Essays in criticism (pp. 119–131). New York: W.W. Norton.Google Scholar
  156. Fukuyama, F. (2003). Our posthuman future: Consequences of the biotechnology revolution. New York: Picador.Google Scholar
  157. Galor, O. & Weil, D. N. (2000). Population, technology, and growth: From Malthusian stagnation to the demographic transition and beyond. American Economics Review, 90, 806–828.CrossRefGoogle Scholar
  158. Gardner, J. N. (2000). The selfish biocosm: Complexity as cosmology. Complexity, 5, 34–45.CrossRefGoogle Scholar
  159. Gardner, J. N. (2005). Coevolution of the cosmic past and future: The selfish biocosm as a closed timelike curve. Complexity, 10, 14–21.CrossRefGoogle Scholar
  160. Gardner, A., & Conlon, J. (2013). Cosmological natural selection and the purpose of the universe. Complexity, 18, 48–56.CrossRefGoogle Scholar
  161. Garis, H. (1999). The Artilect war: Cosmists vs. Terrans: A bitter controversy concerning whether humanity should build godlike massively intelligent machines. ETC Publications.Google Scholar
  162. Garis, H. (2012). Singularity Skepticism. YouTube, Accessed January 9, 2015.
  163. Garland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Daeschler Hauser, N., et al. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21, 687–691.CrossRefGoogle Scholar
  164. Gerhard, O. (2002). Mass distribution in our galaxy. Space Science Reviews, 100, 129–138.CrossRefGoogle Scholar
  165. Gerland, P., Raftery, A. E., Ševčiková, H., Li, N., Gu, D., Spoorenberg, T., et al. (2014). World population stabilization unlikely this century. Science, 346, 234–237.CrossRefGoogle Scholar
  166. Gershenson, C. (2012). The world as evolving information. In A. Minai, D. Braha, & Y. Bar-Yam (Eds.), Unifying themes in complex systems (Vol. VII, pp. 100–115). Berlin: Springer.Google Scholar
  167. Gibney, E. (2014). Earth’s new address: ‘Solar System, Milky Way, Laniakea’. Nature,. doi: 10.1038/nature.2014.15819.Google Scholar
  168. Glenn, J. (1989). Future mind. Washington: Acropolis.Google Scholar
  169. Glenn, J., Gorden, T. H., & Florescu, E. (2014). State of the future 2013–14. The Millennium Project.Google Scholar
  170. Goertzel, B. (2002). Creating internet intelligence: Wild computing, distributed digital consciousness, and the emerging global brain. New York: Plenum.CrossRefGoogle Scholar
  171. Goertzel, B. (2007). Human-level artificial general intelligence and the possibility of technological singularity: A reaction to Ray Kurzweil’s The Singularity Is Near and McDermott’s critique of Kurzweil. Artificial Intelligence, 171, 1161–1173.CrossRefGoogle Scholar
  172. Goertzel, B. (2012). Should humanity build a global AI nanny to delay the singularity until it’s better understood? Journal of Consciousness Studies, 19, 96–111.Google Scholar
  173. Goertzel, B., & Goertzel, B. (Eds.). (2015). The end of the beginning: Life, society and economy on the brink of the singularity. Humanity+ Press.Google Scholar
  174. Goldsmith, D. (2012). The far, far future of stars. Scientific American, 306, 32–39.CrossRefGoogle Scholar
  175. Good, I. J. (1965). Speculations concerning the first ultraintelligent machine. Advances in Computers, 6, 31–83.Google Scholar
  176. Gott, J. R. III, & Li, L.-X. (1998). Can the Universe create itself? Physical Review, 58, 023501.Google Scholar
  177. Gould, S. J. (1996). Full house: The spread of excellence from Plato to Darwin. New York: Harmony Books.CrossRefGoogle Scholar
  178. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
  179. Graeber, D. (2004). Fragments of an anarchist anthropology. Chicago: Prickly Paradigm Press.Google Scholar
  180. Graeber, D. (2015). The Utopia of rules: On technology, stupidity, and the secret joys of bureaucracy. Brooklyn: Melville House.Google Scholar
  181. Grey, C. G. P. (2014). Humans need not apply. YouTube, Accessed August 25, 2014.
  182. Griffith, R., Wright, J. T., Maldonado, J., Povich, M. S., Sigurdsson, S., & Millan, B. (2015). The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. III. The reddest extended sources in WISE. The Astrophysical Journal Supplement Series, 217, 25.CrossRefGoogle Scholar
  183. Grosberg, R., & Strathmann, R. (2007). The evolution of multicellularity: A minor major transition? Annual Review of Ecology Evolution and Systematics, 38, 621–654.CrossRefGoogle Scholar
  184. Hanson, R. (1998). The great filter—Are we almost past it? Accessed June 2, 2014.
  185. Hanson, R. (2000). Long-term growth as a sequence of exponential growth modes. George Mason University, 1–24.Google Scholar
  186. Hanson, R. (2008). Economics of the singularity. IEEE Spectrum. Accessed June 2, 2014.
  187. Harrison, E. R. (1995). The natural selection of universes containing intelligent life. Quarterly Journal of the Royal Astronomical Society, 36, 193.Google Scholar
  188. Harvey, D. (2014). Seventeen contradictions and the end of capitalism. Oxford: Oxford University Press.Google Scholar
  189. Hawking, S. (2013). Stephen hawking says humanity doomed without space exploration. The Huffington Post UK. Accessed September 17, 2014.
  190. Hawking, S. (2014). Stephen Hawking warns artificial intelligence could end mankind. BBC. Accessed January 7, 2015.
  191. Hawkins, J. (2015). The terminator is not coming. The Future Will Thank Us. Re/Code. Accessed March 3, 2015.
  192. Hayles, N. K. (2012). How we think: Digital media and contemporary technogenesis. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  193. Hegel, G. W. F. 1837. (1991). The philosophy of history. Prometheus Books.Google Scholar
  194. Heidegger, M. (1962). Being and time, trans. Macquarrie, J. & Robinson, E. New York: Harper & Row.Google Scholar
  195. Helbing, D. (2012). Introduction: The FuturICT knowledge accelerator towards a more resilient and sustainable future. The European Physical Journal: Special Topics, 214, 5–9.Google Scholar
  196. Helbing, D. (2013a). Globally networked risks and how to respond. Nature, 497, 51–59.CrossRefGoogle Scholar
  197. Helbing, D. (2013b). Economics 2.0: The natural step towards a self-regulating, participatory market society. Evolutionary and Institutional Economics Review, 10, 3–41.CrossRefGoogle Scholar
  198. Helbing, D. (2015). The self-organizing society: Taking the future in our hands. In Digital Society (forthcoming). SSRN. Accessed February 26, 2015.
  199. Heyes, C. M. (1998). Theory of mind in nonhuman primates. Behavioral and Brain Sciences, 21, 101–114.Google Scholar
  200. Heylighen, F. (2000). Evolutionary transitions: How do levels of complexity emerge? Complexity, 6, 53–57.CrossRefGoogle Scholar
  201. Heylighen, F. (2002). The global brain as a new utopia. In R. Maresch, & F. Rotzer (Eds.), Zukunftsfiguren (pp. 1–11).Google Scholar
  202. Heylighen, F. (2007). The global superorganism: An evolutionary-cybernetic model of the emerging network society. Social Evolution & History, 6, 57–118.Google Scholar
  203. Heylighen, F. (2008). Accelerating socio-technological evolution: From ephemeralization and stigmergy to the global brain. In G. Modelski, T. Devezas, & W. Thompson (Eds.), Globalization as evolutionary process: Modeling global change (pp. 284–309).Google Scholar
  204. Heylighen, F. (2010). The self-organization of time and causality: Steps towards understanding the ultimate origin. Foundations of Science, 15, 345–356.CrossRefGoogle Scholar
  205. Heylighen, F. (2011). Self-organization of complex, intelligent systems. Integral Review. Accessed December 14, 2014.
  206. Heylighen, F. (2012). Conceptions of a global brain: An historical review. In B. Rodrigue, L. Grinin, & A. Korotayev (Eds.), From Big Bang to global civilization: A big history anthology. Oakland: University of California Press.Google Scholar
  207. Heylighen, F. (2014a). Cybernetic principles of aging and rejuvenation: The buffering-challenging strategy for life extension. Current Aging Science, 7, 60–75.CrossRefGoogle Scholar
  208. Heylighen, F. (2014b). Challenge propagation: Towards a theory of distributed intelligence and the global brain. Spanda Journal, V, 1–18.Google Scholar
  209. Heylighen, F. (2015). Return to Eden? Promises and perils on the road to global superintelligence. In B. Goertzel, & T. Goertzel (Eds.), The beginning and the end: Life, society, and economy on the brink of singularity.Google Scholar
  210. Heylighen, F., & Bollen, J. (1996). The World-Wide Web as a super-brain: From metaphor to model. In R. Trappl (Ed.), Cybernetics and systems’96 (pp. 917–922).Google Scholar
  211. Heylighen, F., & Joslyn, C. (2001). Cybernetics and second-order cybernetics. In R. A. Meyers (Ed.), Encyclopedia of physical science & technology (3rd ed). New York: Academic Press.Google Scholar
  212. Hillard, K., Hill, K., Lancaster, J., & Magdalena, H. A. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–185.CrossRefGoogle Scholar
  213. Hobsbawm, E. J. (1994). The age of extremes: A history of the world 1914–1991. New York: Pantheon Books.Google Scholar
  214. Hofstadter, D. (2003). Just who will be we, in 2493? Center for Research on Concepts and Cognition. Accessed April 30, 2015.
  215. Hohmann, G., & Fruth, B. (2003). Culture in bonobos? Between-species and within-species variation in behaviour. Current Anthropology, 44, 563–571.CrossRefGoogle Scholar
  216. Hölldobler, B., & Wilson, E. O. (2008). The superorganism: The beauty, elegance, and strangeness of insect societies. New York: W.W. Norton.Google Scholar
  217. Hosaka, K., Matsumoto-Oda, A., Huffman, M. A., & Kawanaka, K. (2000). Reactions to dead bodies of conspecifics by wild chimpanzees in the Mahale Mountains, Tanzania. Primate Research, 16, 1–15.CrossRefGoogle Scholar
  218. House, A. (2014). The real cyborgs. The Telegraph. Accessed March 1, 2015.
  219. Hughes, J. (2004). Citizen cyborg: Why democratic societies must respond to the redesigned human of the future. Boulder: Westview Press.Google Scholar
  220. Hughes, J. (2012). The politics of transhumanism and the techno-millennial imagination, 1626–2030. Zygon, 47, 757–776.CrossRefGoogle Scholar
  221. Hughes, J. (2014). A strategic opening for a basic income guarantee in the global crisis being created by AI, robots, desktop manufacturing and biomedicine. Journal of Evolution & Technology, 24, 45–61.Google Scholar
  222. Humboldt, A. (1845). Cosmos: A sketch of a physical description of the universe. New York: Harper & Brothers.Google Scholar
  223. Hunt, G. R., & Gray, R. D. (2003). Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proceedings of the Royal Society, 270, 867–874.CrossRefGoogle Scholar
  224. Huxley, J. (1968). Transhumanism. Journal of Humanistic Psychology, 8, 73–76.CrossRefGoogle Scholar
  225. Impey, C. (2007). The living cosmos: Our search for life in the universe. New York: Random House.Google Scholar
  226. IPCC. (2013). Climate change 2013: The physical science basis. International Panel on Climate Change.Google Scholar
  227. Ismail, S., Malone, M., van Geest, Y., & Diamandis, P. (2014). Exponential organizations: Why new organizations are ten times better, faster and cheaper than yours (and what to do about it). Diversion Books.Google Scholar
  228. Istvan, Z. (2013). The transhumanist wager. Futurity Imagine Media LLC.Google Scholar
  229. Jantsch, E. (1980). The self-organizing universe: Scientific and human implications of the emerging paradigm of evolution. Oxford: Pergamon Press.Google Scholar
  230. Johnston, J. (2008). The allure of machinic life: Cybernetics, artificial life, and the New AI. Cambridge: MIT Press.CrossRefGoogle Scholar
  231. Joy, B. (2000). Why the future doesn’t need us. Wired. Accessed April 16, 2015.
  232. Kaku, M. (2010). The physics of interstellar travel: To one day, reach the stars.Google Scholar
  233. Kepler, J. (1608/1967). Kepler’s Somnium: The dream, or posthumous work on lunar astronomy. Courier Corporation.Google Scholar
  234. Kaku, M. (2014). The future of mind: The scientific quest to understand, enhance, and empower the mind. New York: Doubleday.Google Scholar
  235. Kant, I. 1781. (2011). Critique of pure reason. CreateSpace Independent Publishing Platform.Google Scholar
  236. Kaplan, H., & Gangestad, S. W. (2005). Life history and evolutionary psychology. In D. M. Buss (Ed.), The handbook of evolutionary psychology. New York: Wiley.Google Scholar
  237. Kardashev, N. S. (1964). Transmission of information by extraterrestrial civilizations. Soviet Astronomy, 8, 27.Google Scholar
  238. Kardashev, N. S. (1997). Cosmology and civilizations. Astrophysics and Space Science, 252, 25–40.Google Scholar
  239. Kauffman, S. (1995). At home in the universe: The search for the laws of self-organization and complexity. Oxford: Oxford University Press.Google Scholar
  240. Kauffman, S. (2000). Investigations. Oxford: Oxford University Press.Google Scholar
  241. Kauffman, S. (2010). Reinventing the sacred: A new view of science, reason, and religion. New York: Basic Books.Google Scholar
  242. Kauffman, S., Logan, R. K., Este, R., Goebel, R., Hobill, D., & Shmulevich, I. (2007). Propagating organization: An inquiry. Biology and Philosophy, 21, 501–521.CrossRefGoogle Scholar
  243. Kelly, K. (1995). Out of control: The new biology of machines, social systems, and the economic world. New York: Perseus Books.Google Scholar
  244. Kelly, K. (2010). What technology wants. New York: Penguin.Google Scholar
  245. Kelly, K. (2015). I am Kevin Kelly, radical techno-optimist, digital pioneer, and co-founder of Wired magazine. AMA! Reddit. r/Futurology. Accessed January 8, 2015.
  246. Kiriakakis, K. (2015). A day at the park. Accessed May 1, 2015.
  247. Klein, B. (2007). When will AI surpass human-level intelligence? AGI-World. Accessed June 5, 2014.
  248. Knoll, A. H., Javaux, E. J., Hewitt, D., & Cohen, P. (2006). Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society: Biological Sciences, 361, 1023–1038.CrossRefGoogle Scholar
  249. Kraas, F., Aggarwal, S., Coy, M., & Mertins, G. (2013). Megacities: Our global urban future. Berlin: Springer.Google Scholar
  250. Krauss, L. (2012). A universe from nothing. New York: Simon and Schuster.Google Scholar
  251. Krauss, L., & Starkman, G. (2004). Universal limits on computation. arXiv preprint, astro-ph/0404510.Google Scholar
  252. Kurzweil, R. (2001). The law of accelerating returns. KurzweilAI. Accessed July 8, 2014.
  253. Kurzweil, R. (2005). The singularity is near: When humans transcend biology. New York: Penguin.Google Scholar
  254. Kurzweil, R. (2010). How my predictions are faring. KurzweilAI, 1–146.Google Scholar
  255. Kurzweil, R. (2012). How to create a mind: The secret of human thought revealed. New York: Penguin.Google Scholar
  256. Kurzweil, R. (2014). Get ready for hybrid thinking. TED. Accessed February 26, 2015.
  257. Laland, K. N. (2008). Exploring gene-culture interactions: insights from handedness, sexual selection and niche-construction case studies. Philosophical Transactions of the Royal Society: Biological Sciences., 363, 3577–3589.CrossRefGoogle Scholar
  258. Laland, K. N., & Hoppitt, W. (2003). Do animals have culture? Evolutionary Anthropology, 12, 150–159.CrossRefGoogle Scholar
  259. Laland, K. N., Uller, T., Feldman, M., Sterelny, K., Muller, G. B., Moczek, A., et al. (2014). Does evolutionary theory need a rethink? Nature, 514, 161–164.CrossRefGoogle Scholar
  260. Lamarck, J. B. 1809. (1914). Zoological philosophy: An exposition with regard to the natural history of animals. London: Macmillan.Google Scholar
  261. Last, C. (2014a). Human evolution, life history theory, and the end of biological reproduction. Current Aging Science, 7, 17–24.CrossRefGoogle Scholar
  262. Last, C. (2014b). Global brain and the future of human society. World Future Review, 6, 143–150.CrossRefGoogle Scholar
  263. Last, C. (2015). Human metasystem transition theory (HMST). Journal of Evolution & Technology, 25, 1–16.Google Scholar
  264. Laughlin, G., Bodenheimer, P., & Adams, F. C. (1997). The end of the main sequence. The Astrophysical Journal, 482, 420–432.CrossRefGoogle Scholar
  265. Lawson, D. W., & Mace, R. (2011). Parental investment and the optimization of human family size. Philosophical Transactions of the Royal Society: Biological Sciences, 366, 333–343.CrossRefGoogle Scholar
  266. Learned, J. G. (2012). The cepheid galactic internet. Contemporary Physics, 53, 113–118.CrossRefGoogle Scholar
  267. Lebkowsky, J. (1997). It’s better to be inspired than wired: An Interview with R.U. sirius. In A. Kroker, & M. Kroker (Eds.), Digital delirium (pp. 16–24). New York: St. Martin’s Press.Google Scholar
  268. Leibniz, G. W. 1710. (2000). Theodicy: Essays on the goodness of god, the freedom of man and the origin of evil. Wipf and Stock Publishers.Google Scholar
  269. Leitenberg, M. (2006). Deaths in wars and conflicts in the 20th century. New York: Cornell University.Google Scholar
  270. Linde, A. D. (1988). Life after inflation. Physics Letters, 211, 29–31.CrossRefGoogle Scholar
  271. Lineweaver, C. H., Davies, P. C. W., & Ruse, M. (Eds.). (2013a). Complexity and the arrow of time. New York: Cambridge University Press.Google Scholar
  272. Lineweaver, C. H., Davies, P. C. W., & Ruse, M. (2013b). What is complexity? Is it increasing? In C. H. Lineweaer, P. C. W. Davies, & M. Ruse (Eds.), Complexity and the arrow of time (pp. 3–16). New York: Cambridge University Press.CrossRefGoogle Scholar
  273. Livio, M. (Ed.). (2010). The dark universe: Matter, energy, and gravity. Cambridge: Cambridge University Press.Google Scholar
  274. Lloyd, S. (2000). Ultimate physical limits to computation. Nature, 406, 1047–1054.CrossRefGoogle Scholar
  275. Lloyd, S. (2006). Programming the universe: A quantum computer scientist takes on the cosmos. New York: Alfred A. Knopf.Google Scholar
  276. Lloyd, S. (2013). On the spontaneous generation of complexity in the universe. In C. H. Lineweaer, P. C. W. Davies, & M. Ruse (Eds.), Complexity and the arrow of time (pp. 80–112).Google Scholar
  277. Lloyd, S., & Ng, J. (2004). Black hole computers. Scientific American, 291, 52–61.Google Scholar
  278. Loeb, A. (2011). Cosmology with hypervelocity stars. Journal of Cosmology and Astroparticle Physics, 4, 23.CrossRefGoogle Scholar
  279. Loeb, A., & Furlanetto, S. R. (2013). The first galaxies in the universe. Princeton: Princeton University Press.CrossRefGoogle Scholar
  280. Logan, R. K. (2007). The extended mind: The emergence of language, the human mind, and culture. Toronto: University of Toronto Press.Google Scholar
  281. Logan, R. K. (2014). What is information? Propagating organization in the biosphere, the symbolsphere, the technosphere and the econosphere. DEMO Publishing.Google Scholar
  282. Loosemore, R., & Goertzel, B. (2012). Why an intelligence explosion is probable. Singularity Hypotheses, 1–13.Google Scholar
  283. Lotka, A. (1922). Contribution to the energetics of evolution. Proceedings of the National Academy of Science, 8, 147–155.CrossRefGoogle Scholar
  284. Mann, J., Stanton, M. A., Patterson, E. M., Bienenstock, E., J. & Singh, L. O. (2012). Social networks reveal cultural behaviour in tool-using dolphins. Nature Communications, 980, 1–7.Google Scholar
  285. Marks, J. (2002). What it means to be 98% chimpanzee: Apes, people, and their genes. Berkeley: University of California Press.Google Scholar
  286. Marks, J. (2012). The biological myth of human evolution. Contemporary Social Science, 7, 139–165.CrossRefGoogle Scholar
  287. Marks, J. (2013). The nature/culture of genetic facts. Annual Review of Anthropology, 42, 247–267.CrossRefGoogle Scholar
  288. Marks, J. (2015). The growth of biocultural thought. Evolutionary Anthropology, 24, 33–36.CrossRefGoogle Scholar
  289. Marx, K. 1844. (1988). Economic and philosophical manuscripts of 1844 and the communist manifesto. Prometheus Books.Google Scholar
  290. Massey, R., Rhodes, J., Ellis, R., Scoville, N., Leauthaud, A., Finoguenov, A., et al. (2007). Dark matter maps reveal cosmic scaffolding. Nature, 445, 286–290.CrossRefGoogle Scholar
  291. Maturana, H. R., & Varela, F. (1980). Autopoeisis and cognition: The realization of living. Dordecht: Reidel.CrossRefGoogle Scholar
  292. McDougall, I., Brown, F. H., & Fleagle, J. G. (2005). Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature, 433, 733–736.CrossRefGoogle Scholar
  293. McGill, W. (1972). The Columbia history of the world. New York: Harper & Row.Google Scholar
  294. McGinnis, J., & Pearce, R. (2014). The great disruption: How machine intelligence will transform the role of lawyers in the delivery of legal Services. Northwestern Public Law Research Paper, 82, 14–17.Google Scholar
  295. McKenna, T. (1994). Cultural frontiers in the age of information. Accessed September 19, 2014.
  296. McKenna, T. (1998a). Time. In R. Sheldrake, T. McKenna, & R. Abraham (Eds.), The evolutionary mind. Trialogue Press.Google Scholar
  297. McKenna, T. (1998b). Interview: Hawaii. [On “Novelty Theory”]. YouTube. Accessed August 29, 2014.
  298. McKibben, B. (2003). Enough: Genetic engineering and the end of human nature. London: Bloomsbury.Google Scholar
  299. Miller, J. G. (1978). Living systems. New York: McGraw-Hill.Google Scholar
  300. Minsky, M. (1988). Society of mind. New York: Simon and Schuster.Google Scholar
  301. Mirowski, P. (2013). Never let a serious crisis go to waste: How neoliberalism survived the financial meltdown. London: Verso.Google Scholar
  302. Moore, G. (1965). Cramming more components onto integrated circuits. Electronics, 38, 1–4.Google Scholar
  303. Moore, G. (1975). Progress in digital integrated electronics. IEEE International Electron Devices Meeting, 11–13.Google Scholar
  304. Moravec, H. (1988). Mind children: The future of robot and human intelligence. Cambridge: Harvard University Press.Google Scholar
  305. Moravec, H. (1998). When will computer hardware match the human brain? Journal of Evolution and Technology, 1, 1–12.Google Scholar
  306. More, T. 1516. (1869). Utopia. London: Murray & Son.Google Scholar
  307. More, M. (1990). Transhumanism: Toward a futurist philosophy. Extropy, 6, 6–12.Google Scholar
  308. More, M., & Vita-More, N. (Eds.). (2014). The transhumanist reader: Classical and contemporary essays on the science, technology, and philosophy of the human future. New York: Wiley.Google Scholar
  309. Morin, E. (2007). Restricted complexity, general complexity. In C. Gershenson, D. Aerts, & B. Edmonds (Eds.), Philosophy and complexity (pp. 5–29). Singapore: World Scientific.Google Scholar
  310. Morowitz, H. J. (1968). Energy flow in biology. New York: Academic Press.Google Scholar
  311. Morris, S. C. (1998). The crucible of creation: The burgess shale and the rise of animals. Oxford: Oxford University Press.Google Scholar
  312. Morris, S. C. (2013). Life: The final frontier for complexity? In C.H. Lineweaer, P.C.W. Davies, & M. Ruse (Eds.), Complexity and the arrow of time (pp. 135–161).Google Scholar
  313. Mullainathan, S., & Shafir, E. (2013). Scarcity: Why having too little means so much. New York: Macmillan.Google Scholar
  314. Müller, V. C., & Bostrom, N. (2014). Future progress in artificial intelligence: A poll among experts. AI Matters, 1, 9–11.CrossRefGoogle Scholar
  315. Musk, E. (2014). Elon Musk: Artificial intelligence is our biggest existential threat. The Guardian, Accessed January 7, 2015.
  316. Naam, R. (2014). The singularity is further than it appears. Charlie’s Diary. Accessed August 19, 2014.
  317. Nagy, B., Farmer, J. D., Trancik, J. E., & Gonzalez, J. P. (2011). Superexponential long-term trends in information technology. Technological Forecasting and Social Change, 78, 1356–1364.CrossRefGoogle Scholar
  318. Nakamichi, M., Koyama, N., & Jolly, A. (1996). Maternal responses to dead and dying infants in wild troops of ring-tailed lemurs at the Berenty Reserve. International Journal of Primatology, 17, 505–523.CrossRefGoogle Scholar
  319. Newton, I. 1687. (1802). Mathematical principles of natural philosophy. London: A. Stralian, Printers-Street.Google Scholar
  320. Nicolelis, M. (2011). Beyond boundaries: The new neuroscience of connecting brains with machines—And how it will change our lives. New York: Macmillan.Google Scholar
  321. Niele, F. (2005). Energy: Engines of evolution. Amsterdam: Elsevier.Google Scholar
  322. Nietzsche, F. (1883). Thus spoke Zarathustra. In W. Kaufmann (Ed.) (trans) The portable Nietzsche. New York: Viking Press.Google Scholar
  323. North, J. (2008). Cosmos: An illustrated history of astronomy and cosmology. Chicago: University of Chicago Press.Google Scholar
  324. O’Malley-James, J. T., Greaves, J. S., Raven, J. A., & Cockell, C. S. (2013). Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology, 12, 99–112.CrossRefGoogle Scholar
  325. Oberth, H. (1957). Man into space. New York: Harper.Google Scholar
  326. Ottoni, E. B., & Izar, P. (2008). Capuchin monkey tool use: Overview and implications. Evolutionary Anthropology, 17, 171–178.CrossRefGoogle Scholar
  327. Oxfam. (2014). Working for the few: Political capture and economic inequality. Oxfam Briefing Paper.Google Scholar
  328. Pais-Vieira, M., Lebedev, M., Kunicki, C., Wang, J., & Nicolelis, M. (2013). A brain-to-brain interface for real-time sharing of sensorimotor information. Scientific Reports, 3, 1319.CrossRefGoogle Scholar
  329. Patterson, E. M., & Mann, J. (2011). Ecological conditions that favor tool use and innovation in wild bottlenose dolphins (Tursiops sp.). PLoS One, 6, e22243.CrossRefGoogle Scholar
  330. Pearce, D. (2014). What is transhumanism?—The three supers with David Pearce. Humanity+. Accessed December 17, 2014.
  331. Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31, 109–130.Google Scholar
  332. Pennachin, C., & Goertzel, B. (2007). Contemporary approaches to artificial general intelligence. In Artificial general intelligence (pp. 1–30). Berlin: Springer.Google Scholar
  333. Pennisi, E., & Roush, W. (1997). Developing a new view of evolution. Science, 277, 34–37.CrossRefGoogle Scholar
  334. Pepitone, J. (2014). Cyborgs among us: Human Biohackers’ embed chips in their bodies. NBC News. Accessed March 1, 2015.
  335. Poundstone, W. (1985). The recursive universe: Cosmic complexity and the limits of scientific knowledge. New York: Dover.Google Scholar
  336. Prigogine, I., Nicolas, G., & Babloyantz, A. (1972a). Thermodynamics of evolution (II). Physics Today, 25, 38–44.CrossRefGoogle Scholar
  337. Prigogine, I., Nicolis, G., & Babloyantz, A. (1972b). Thermodynamics of evolution (I). Physics Today, 25, 23–28.CrossRefGoogle Scholar
  338. Pross, A., & Pascal, R. (2013). The origin of life: What we know, what we can know, and what we will never know. Open Biology, 3, 120190.CrossRefGoogle Scholar
  339. Randers, J. (2012). 2052: A global forecast for the next forty years. Chelsea Green Publishing.Google Scholar
  340. Rao, R. P., Stocco, A., Bryan, M., Sarma, D., Youngquist, T. M., Wu, J., & Prat, C. S. (2014). A direct brain-to-brain interface in humans. PLoS One, 9, e111332.CrossRefGoogle Scholar
  341. Rees, M. (1997). Before the beginning—Our universe and others. Reading: Addison-Wesley.Google Scholar
  342. Reeves, H. (1985). Atoms of silence: An exploration of cosmic evolution. Cambridge: MIT Press.Google Scholar
  343. Rendell, L., & Whitehead, H. (2001). Culture in whales and dolphins. Behavioural and Brain Sciences, 24, 309–324.CrossRefGoogle Scholar
  344. Ribas, I. (2009). The Sun and stars as the primary energy input in planetary atmospheres. Proceedings of the International Astronomical Union, 5, 3–18.CrossRefGoogle Scholar
  345. Richerson, P. J., & Boyd, R. (2008). Not by genes alone: How culture transformed human evolution. Chicago: University of Chicago Press.Google Scholar
  346. Ridley, M. (2010). Rational optimist: How prosperity evolves. New York: Harper-Collins.Google Scholar
  347. Rifkin, J. (2014). The zero marginal cost society: The internet of things, the collaborative commons, and the eclipse of capitalism. Palgrave Macmillan Trade.Google Scholar
  348. Rodrigue, B., Grinin, L., & Korotayev, A. (Eds.). (2012). From Big Bang to global civilization: A big history anthology. Oakland: University of California Press.Google Scholar
  349. Rothblatt, M. (2014). Virtually human: The promise—and the peril—of digital immortality. New York: St. Martin’s Press.Google Scholar
  350. Rothschild, L. (2007). Extremophiles: Defining the envelope for the search for life in the universe. Planetary Systems and the Origins of Life, 3, 113–134.CrossRefGoogle Scholar
  351. Rousseau, J.-J. 1762. (1994). Of the social contract, or principles of political right. Oxford: Oxford University Press.Google Scholar
  352. Ruse, M., & Travis, J. (Eds.). (2009). Evolution: The first four billion years. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
  353. Russell, B. (1903). A free man’s worship. Princeton: Princeton University Press.Google Scholar
  354. Rybicki, K. R., & Denis, C. (2001). On the final destiny of the earth and the solar system. Icarus, 151, 130–137.CrossRefGoogle Scholar
  355. Sagan, C. (1973). The cosmic connection: An extraterrestrial perspective. Cambridge: Cambridge University Press.Google Scholar
  356. Sagan, C. (1975). The recognition of extraterrestrial intelligence. Proceedings of the Royal Society of London: Biological Sciences, 189, 143–153.CrossRefGoogle Scholar
  357. Sagan, C. (1977). Dragons of Eden: Speculations on the evolution of human intelligence. New York: Random House.Google Scholar
  358. Sagan, C. (1980). Cosmos. New York: Random House.Google Scholar
  359. Sagan, C. (1997). The pale blue dot: A vision of the human future in space. London: Headline.Google Scholar
  360. Sagan, C., & Shklovskii, I. S. (1966). Intelligent life in the universe. San Francisco: Holden-Day Inc.Google Scholar
  361. San Miguel, M., Johnson, J. H., Kertesz, J., Kaski, K., Diaz-Guilera, A., MacKay, R. S., et al. (2012). Challenges in complex systems science. The European Physical Journal: Special Topics, 214, 245–271.Google Scholar
  362. Sandberg, A. (2010). An overview of models of technological singularity. Roadmaps to AGI and the Future of AGI, 1–13.Google Scholar
  363. Sandberg, A., & Bostrom, N. (2008). Whole brain emulation: A roadmap. Future of Humanity Institute Technical Report.Google Scholar
  364. Sandberg, A., & Bostrom, N. (2011). Machine intelligence survey. Future of Humanity Institute Technical Report.Google Scholar
  365. Schaller, R. R. (1997). Moore’s Law: Past, present, and future. Spectrum, IEEE, 34, 52–59.CrossRefGoogle Scholar
  366. Schmidhuber, J. (2012). Philosophers and futurists, catch up! Response to the singularity. Journal of Consciousness Studies, 19, 173–182.Google Scholar
  367. Schröder, K.-P., & Smith, R. C. (2007). Distant future of the Sun and Earth revisited. Monthly Notices of the Royal Astronomical Society, 386, 155–163.CrossRefGoogle Scholar
  368. Schrödinger, E. (1944). What is life? Cambridge: Cambridge University Press.Google Scholar
  369. Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27(379–423), 623–656.CrossRefGoogle Scholar
  370. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
  371. Shapley, H. (1930). Flights from chaos. New York: McGraw Hill.Google Scholar
  372. Shelley, P. B. (1813). Queen mab. New York: Wright & Owen.Google Scholar
  373. Shostak, S. (2013). We’ll find ET by 2037! YouTube. Accessed March 1, 2015.
  374. Smart, J. (2000). Intro to the developmental singularity hypothesis. Accelerating Watch, Accessed September 17, 2014.
  375. Smart, J. (2009). Evo devo universe? A framework for speculations on cosmic culture. In S. J. Dick, & M. L. Lupisella (Eds.), Cosmos & culture: Cultural evolution in a cosmic context (pp. 201–296).Google Scholar
  376. Smart, J. (2012). The transcension hypothesis: Sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI. Acta Astronautica, 78, 55–68.CrossRefGoogle Scholar
  377. Smil, V. (1994). Energy in world history (essays in world history). Boulder: Westview Press.Google Scholar
  378. Smith, Q. (1990). A natural explanation of the existence and laws of our universe. Australasian Journal of Philosophy, 68, 22–43.CrossRefGoogle Scholar
  379. Smith, Q. (2000). The black hole origin theory of the universe. In International conference on physical cosmology, Santa Barbara.Google Scholar
  380. Smith, J. M., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: Oxford University Press.Google Scholar
  381. Smith, J. M., & Szathmáry, E. (2000). The origins of life: From the birth of life to the origin of language. Oxford: Oxford University Press.Google Scholar
  382. Smolin, L. (1992). Did the universe evolve? Classical and Quantum Gravity, 9, 173–191.CrossRefGoogle Scholar
  383. Smolin, L. (1997). The life of the cosmos. Oxford: Oxford University Press.Google Scholar
  384. Smolin, L. (2006). The status of cosmological natural selection. arXiv:hep-th/0612185v1.Google Scholar
  385. Snow, C. P. (1959). Two cultures. Science, 130, 419. doi: 10.1126/science.130.3373.419.CrossRefGoogle Scholar
  386. Souers, P. C. (1986). Hydrogen properties of fusion energy. Berkeley: University of California Press.Google Scholar
  387. Spencer, H. (1896). A system of synthetic philosophy. London: Williams and Norgate.Google Scholar
  388. Spier, F. (1996). The structure of big history: From the Big Bang until today. Amsterdam: Amsterdam University Press.CrossRefGoogle Scholar
  389. Spier, F. (2005). How big history works: Energy flows and the rise and demise of complexity. Social Evolution & History, 4, 87–135.Google Scholar
  390. Spier, F. (2011). Big history and the future of humanity. New York: Wiley.Google Scholar
  391. Spinoza, B. 1677. (2000). Ethics, demonstrated geometrical order. Oxford: Oxford University Press.Google Scholar
  392. Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., et al. (2005). Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 435, 629–636.CrossRefGoogle Scholar
  393. Springer, S. (2012). Neoliberalising violence: Of the exceptional and the exemplary in coalescing moments. Area, 44, 136–143.CrossRefGoogle Scholar
  394. Standing, G. (2002). Beyond the new paternalism: Basic security as equality. London: Verso.Google Scholar
  395. Standing, G. (2011). The Precariat: The new dangerous class. A&C Black.Google Scholar
  396. Stewart, J. (2000). Evolution’s arrow: The direction of evolution and the future of humanity. Canberra: Chapman Press.Google Scholar
  397. Stewart, J. (2008). The future of life and what it means for humanity. In C. Vidal (Ed.), The evolution and development of the universe (pp. 349–352).Google Scholar
  398. Stewart, J. (2010). The meaning of life in a developing universe. Foundations of Science, 15, 395–409.CrossRefGoogle Scholar
  399. Stewart, J. (2014). The direction of evolution: The rise of cooperative organization. Biosystems,. doi: 10.1016/j.biosystems.2014.05.006.Google Scholar
  400. Stock, G. (2002). Redesigning humans: Our inevitable genetic future. New York: Houghton Mifflin.Google Scholar
  401. Tarter, J. C. (2001). The search for extraterrestrial intelligence (SETI). Annual Review of Astronomy and Astrophysics, 39, 511–548.CrossRefGoogle Scholar
  402. Teilhard de Chardin, P. (1923). Hominization. In The vision of the past (1966). Collins.Google Scholar
  403. Teilhard de Chardin, P. (1955). The phenomenon of man. New York: Harper & Row.Google Scholar
  404. Teilhard de Chardin, P. (1966). The vision of the past. London: Collins.Google Scholar
  405. Teleki, G. (1973). Group response to the accidental death of a chimpanzee in Gombe National Park, Tanzania. Folia Primatologica, 20, 81–94.CrossRefGoogle Scholar
  406. Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society, 364, 2405–2415.CrossRefGoogle Scholar
  407. Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. London: Harvard University Press.Google Scholar
  408. Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J. H., Qing, Q., et al. (2012). Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Materials, 11, 986–994.CrossRefGoogle Scholar
  409. Tipler, F. (1994). The physics of immortality: Modern cosmology, god and the resurrection of the dead. London: Macmillan.Google Scholar
  410. Tomasello, M., & Herrmann, E. (2010). Ape and human cognition: What’s the difference? Current Directions in Psychological Studies, 19, 3–8.CrossRefGoogle Scholar
  411. Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. Behavioral and Brain Sciences, 16, 495–511.CrossRefGoogle Scholar
  412. Tomitani, A., Knoll, A. H., Cavanaugh, C. M., & Ohno, T. (2006). The evolutionary diversification of the Cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proceedings of the National Academy of Sciences, 103, 5442–5447.CrossRefGoogle Scholar
  413. Trefil, J. S. (2013). The moment of creation: Big Bang physics from before the first millisecond to the present universe. Courier Dover Publications.Google Scholar
  414. Tsiolkovsky, K. (1911). Letter of correspondence in 1911. Wikipedia (“Russian Cosmism”). Accessed June 3, 2014.
  415. Tsiolkovsky, K. 1929. (2004). The aims of astronautics. Athena University Press.Google Scholar
  416. Tucker, R. (1972). Philosophy and myth in Karl Marx. Cambridge: Cambridge University Press.Google Scholar
  417. Turchin, V. (1977). The phenomenon of science: A cybernetic approach to human evolution. New York: Columbia University Press.Google Scholar
  418. Turing, A. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefGoogle Scholar
  419. Tyson, N. (2010). The poetry of science: Richard Dawkins and Neil deGrasse Tyson. YouTube. Accessed March 1, 2015.
  420. Ulam, S. (1958). Tribute to John von Neumann. Bulletin of the American Mathematical Society, 64, 1–49.CrossRefGoogle Scholar
  421. Underhill, J. W. (2009). Humboldt, worldview and language. Edinburgh: Edinburgh University Press.CrossRefGoogle Scholar
  422. United Nations. (2013). World fertility patterns. New York: Department of Economic and Social Affairs, United Nations.Google Scholar
  423. Vallentin, A. (1954). Einstein: A biography. London: Weidenfeld and Nicolson.Google Scholar
  424. van de Weygaert, R., & Schaap, W. (2009). The cosmic web: Geometric analysis. Data Analysis in Cosmology, 665, 291–413.CrossRefGoogle Scholar
  425. van Schaik, C. P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C. D., Singleton, I., et al. (2003). Orangutan cultures and the evolution of material culture. Science, 299, 102–105.CrossRefGoogle Scholar
  426. Veitas, V., & Weinbaum, D. (2015). A world of views: A world of interacting post-human intelligences. In B. Goertzel, & T. Goertzel (Eds.), The beginning of the end: Life, society, and economy on the brink of singularity (pp. 495–567).Google Scholar
  427. Veras, D., Evans, N. W., Wyatt, M. C., & Tout, C. A. (2014). The great escape-III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context. Monthly Notices of the Royal Astronomical Society, 437, 1127–1140.CrossRefGoogle Scholar
  428. Vidal, C. (2010). Big history and our future: Extension, evaluation and significance of a universal complexity metric. GBI Working Paper, 1–6.Google Scholar
  429. Vidal, C. (2014a). The beginning and the end: The meaning of life in a cosmological perspective. Berlin: Springer.CrossRefGoogle Scholar
  430. Vidal, C. (2014b). Cosmological immortality: How to eliminate aging on a universal scale. Current Aging Science,. doi: 10.2174/1874609807666140521111107.Google Scholar
  431. Vidal, C. (2015). Distributed cognition: From local brains to the global brain. In B. Goertzel & T. Goertzel (Eds.), The beginning of the end: Life, society, and economy on the brink of singularity.Google Scholar
  432. Vinge, V. (1993). The coming technological singularity. Whole Earth Review, 81, 88–95.Google Scholar
  433. Vinge, V. (2007). Signs of the singularity. IEEE Spectrum, 1–6.Google Scholar
  434. Vita-More, N. (1983). Transhuman manifesto. Accessed April 24, 2015.
  435. Vita-More, N. (1992). Transhumanist arts statement. Revised 2002. Accessed April 24, 2015.
  436. Voros, J. (2014). Galactic-scale macro-engineering: Looking for signs of other intelligence species, as an exercise in hope for our own. Big History: Exploring a New Scholarly Field, 1–18.Google Scholar
  437. Wallace, A. R. (1871). Contributions to the theory of natural selection. New York: Macmillan.Google Scholar
  438. Warren, Y., & Williamson, E. A. (2004). Transport of dead infant mountain gorilla by mothers and unrelated females. Zoo Biology, 23, 375–378.CrossRefGoogle Scholar
  439. Webb, S. (2002). If the universe is teeming with aliens… Where is everybody? Fifty solutions to the fermi paradox and the problem of extraterrestrial life (Vol. 101). Berlin: Springer.Google Scholar
  440. Weil, D. (2004). Economic growth. Addison-Wesley.Google Scholar
  441. Weinberg, S. (1977). The first three minutes: A modern view of the origin of the universe. New York: Basic Books.Google Scholar
  442. Wells, H. G. (1908). First and last things: A confession of faith and a rule of life. G.P: Putnam’s Sons.Google Scholar
  443. Wells, H. G. (1920). The outline of history: Being a plain history of life and mankind. New York: Macmillan.Google Scholar
  444. Wernick, A. (2014). Some sci-fi writers want fewer killer robots and more vision for the future. Pri. Accessed May 2, 2015.
  445. West, M. J., King, A. P., & White, D. J. (2003). Discovering culture in birds: The role of learning and development. Animal social complexity: Intelligence, culture, and individualized societies. Cambridge: Harvard University Press.Google Scholar
  446. Wheeler, J. A. (1988). World as system self-synthesized by quantum networking. IBM Journal of Research and Development, 32, 4–15.CrossRefGoogle Scholar
  447. White, L. (1949). The science of culture: A study of man and civilization. New York: Grove Press Inc.Google Scholar
  448. White, T., Asfaw, B., DeGusta, D., Gilbert, H., Richards, G. D., Suwa, G., et al. (2003). Pleistocene homo sapiens from Middle Awash, Ethiopia. Nature. doi: 10.1038/nature01669.
  449. Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., et al. (1999). Cultures in chimpanzees. Nature, 399, 15–18.CrossRefGoogle Scholar
  450. Wiener, N. (1948). Cybernetics: Or control and communication in the animal and machine. Cambridge: MIT Press.Google Scholar
  451. Wiener, N. (1950). The human use of human beings: Cybernetics and society. London: Free Association Books.Google Scholar
  452. Wiener, N. (1963). God and Golem, Inc. A comment on certain points where cybernetics impinges on religion. Cambridge: MIT Press.Google Scholar
  453. Wierenga, E. R. (2003). The nature of god: An inquiry into divine attributes. Ithaca: Cornell University Press.Google Scholar
  454. Williams, H., Levin, I. I., Ryan Norris, D., Newman, A. E. M., & Wheelwright, N. T. (2013). Three decades of cultural evolution in Savannah sparrow songs. Animal Behaviour, 85, 213.CrossRefGoogle Scholar
  455. Wilson, E. O. (1998). Consilience: The unity of knowledge. New York: Random House.Google Scholar
  456. Woese, C., Kandler, O., & Wheelis, M. (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87, 4576–4579.CrossRefGoogle Scholar
  457. Wolfram, S. (2002). A new kind of science. Wolfram Media.Google Scholar
  458. Wolfram, S. (2011). Imagining the future with a new kind of science. Accessed September 17, 2014.
  459. World Factbook. (2014). Country comparison: Total fertility rate. Accessed April 14, 2015.
  460. Yampolskiy, R. V. (2012). Leakproofing the singularity: Artificial intelligence confinement problem. Journal of Consciousness Studies, 19, 194–214.Google Scholar
  461. Zalasiewicz, J., Williams, M., Smith, A., Barry, T. L., Coe, A. L., Bown, P. R., et al. (2008). Are we now living in the anthropocene? GSA Today, 18, 4–8.CrossRefGoogle Scholar
  462. Zimmerman, M. E. (2008). The singularity: A crucial phase in divine self-actualization? Cosmos and History: The Journal of Nature and Social Philosophy, 4, 347–370.Google Scholar
  463. Žižek, S. (2011). Living in the end times. London: Verso.Google Scholar
  464. Žižek, S. (2012). Less than nothing: Hegel and the shadow of dialectical materialism. London: Verso.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Global Brain Institute (GBI)Vrije Universiteit Brussel (VUB) (Free University of Brussels)BrusselsBelgium

Personalised recommendations