Advertisement

Foundations of Science

, Volume 20, Issue 4, pp 399–427 | Cite as

Many-Measurements or Many-Worlds? A Dialogue

  • Diederik Aerts
  • Massimiliano Sassoli de Bianchi
Article

Abstract

Many advocates of the Everettian interpretation consider that theirs is the only approach to take quantum mechanics really seriously, and that this approach allows to deduce a fantastic scenario for our reality, one that consists of an infinite number of parallel worlds that branch out continuously. In this article, written in dialogue form, we suggest that quantum mechanics can be taken even more seriously, if the many-worlds view is replaced by a many-measurements view. This allows not only to derive the Born rule, thus solving the measurement problem, but also to deduce a one-world non-spatial reality, providing an even more fantastic scenario than that of the multiverse.

Keywords

Measurement problem Many-worlds Parallel universes  Hidden-measurement Bloch-sphere 

References

  1. Aerts, D. (1999). The stuff the world is made of: Physics and reality. pp. 129–183. In D. Aerts, J. Broekaert, E. Mathijs (Eds.), The White Book of ‘Einstein Meets Magritte’. Dordrecht: Kluwer, 274 pp.Google Scholar
  2. Aerts, D. (2014). Quantum theory and human perception of the macro-world. Frontiers in Psychology, 5, 554. doi: 10.3389/fpsyg.2014.00554.
  3. Aerts, D., & Sassoli de Bianchi, M. (2014a). The unreasonable success of quantum probability I: Quantum measurements as uniform measurements. arXiv:1401.2647 [quant-ph].
  4. Aerts, D., & Sassoli de Bianchi, M. (2014b). The unreasonable success of quantum probability II: Quantum measurements as universal measurements. arXiv:1401.2650 [quant-ph].
  5. Aerts, D., & Sassoli de Bianchi, M. (2014c). The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals of Physics. doi: 10.1016/j.aop.2014.09.020.
  6. Aerts, D. (1982). Description of many physical entities without the paradoxes encountered in quantum mechanics. Foundations of Physics, 12, 1131–1170.CrossRefGoogle Scholar
  7. Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics, 27, 202–210.CrossRefGoogle Scholar
  8. Aerts, D. (1998a). The hidden measurement formalism: What can be explained and where paradoxes remain. International Journal of Theoretical Physics, 37, 291.CrossRefGoogle Scholar
  9. Aerts, D. (1998b). The entity and modern physics: The creation-discovery view of reality. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics. Princeton: Princeton University Press.Google Scholar
  10. Aerts, D. (2010). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics, 49, 2950–2970.CrossRefGoogle Scholar
  11. Albert, D., & Loewer, B. (1988). Interpreting the many worlds interpretation. Synthese, 77, 195–213.CrossRefGoogle Scholar
  12. Baker, D. J. (2007). Measurement outcomes and probability in Everettian quantum mechanics. Studies In History and Philosophy of Science Part B: Sudies In History and Philosophy of Modern Physics, 38, 153–169.CrossRefGoogle Scholar
  13. Barnum, H., Caves, C. M., Finkelstein, J., Fuchs, C. A., & Schack, R. (2000). Quantum probability from decision theory? Proceedings of the Royal Society London, A456, 1175–1182.CrossRefGoogle Scholar
  14. Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38, 447–452.CrossRefGoogle Scholar
  15. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of hidden variables, II. Physics Review, 85, 180–193.CrossRefGoogle Scholar
  16. Bohm, D. (1957). Causality and chance in modern physics. London: Routledge & Kegan Paul.CrossRefGoogle Scholar
  17. Born, M. (1926). Quantenmechanik der Stoßvorgänge. Z. Phys., 38, 803–827.CrossRefGoogle Scholar
  18. Cassinello, A., & Sánchez-Gómez, J. L. (1996). On the probabilistic postulate of quantum mechanics. Foundations of Physics, 26, 1357–1374.CrossRefGoogle Scholar
  19. Caves, C., & Schack, R. (2005). Properties of the frequency operator do not imply the quantum probability postulate. Annals of Physics, 315, 123–146.CrossRefGoogle Scholar
  20. Coecke, B. (1995). Generalization of the proof on the existence of hidden measurements to experiments with an infinite set of outcomes. Foundations of Physics Letters, 8, 437.CrossRefGoogle Scholar
  21. Deutsch, D. (1996). Comment on Lockwood. British Journal for the Philosophy of Science, 47, 222–228.CrossRefGoogle Scholar
  22. Deutsch, D. (1998). The fabric of reality. London: Penguin Book.Google Scholar
  23. Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society London, A455, 3129–3137.CrossRefGoogle Scholar
  24. DeWitt, B., & Graham, N. (Eds.). (1973). The many-worlds interpretation of quantum mechanics. Princeton: Princeton University Press.Google Scholar
  25. Everett, H. (1957). Relative state formulation of quantum mechanics. Review of Modern Physics, 29, 454–462.CrossRefGoogle Scholar
  26. Feynman, R. P. (1992). The character of physical law. London: Penguin Books.Google Scholar
  27. Gell-Mann, M., & Hartle, J. (1993). Classical equations for quantum systems. Physical Review D, 47, 3345–3382.CrossRefGoogle Scholar
  28. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P. J., et al. (2011). Quantum interference of large organic molecules. Nature Communications, 2, 263.CrossRefGoogle Scholar
  29. Geroch, R. (1984). The Everett interpretation. Noûs, 18, 617–633.CrossRefGoogle Scholar
  30. Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Jounal of Mathematics and Mechanics, 6, 885–893.Google Scholar
  31. Gudder, S. P. (1970). On hidden-variable theories. Journal of Mathematical Physics, 11, 431–436.CrossRefGoogle Scholar
  32. Hartle, J. (1968). Quantum mechanics of individual systems. American Journal of Physics, 36, 704–712.CrossRefGoogle Scholar
  33. Jauch, J. M., & Piron, C. (1963). Can hidden variables be excluded in quantum mechanics? Helvetica Physics Acta, 36, 827–837.Google Scholar
  34. Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Jounal of Mathematics and Mechanics, 17, 59–87.Google Scholar
  35. Kolmogorov, A. N. (1950). Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik (1933); translated as Foundations of Probability. New York: Chelsea Publishing Company.Google Scholar
  36. Laplace, P. S. (1951). A philosophical essay on probabilities. New York: Dover Publications Inc., English edition 1951 (1814).Google Scholar
  37. Lockwood, M. (1996). Many Minds’. Interpretations of quantum mechanics. British Journal for the Philosophy of Science, 47, 159–188.CrossRefGoogle Scholar
  38. Piron, C. (1976). Foundations of quantum physics. Reading, MA: W. A. Benjamin.CrossRefGoogle Scholar
  39. Sassoli de Bianchi, M. (2014). God may not play dice, but human observers surely do. Foundations of Science. doi: 10.1007/s10699-014-9352-4.
  40. Sassoli de Bianchi, M. (2013). Quantum dice. Annals of Physics, 336, 56–75.CrossRefGoogle Scholar
  41. Sassoli de Bianchi, M. (2013). Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aerts’ machine-models. Central European Journal of Physics, 11, 147–161.Google Scholar
  42. Sassoli de Bianchi, M. (2014). A remark on the role of indeterminism and non-locality in the violation of Bell’s inequality. Annals of Physics, 342, 133–142.CrossRefGoogle Scholar
  43. Saunders, S., Barrett, J., Kent, A., & Wallace, D. (Eds.). (2010). Many worlds? Quantum theory and reality. Everett: Oxford University Press.Google Scholar
  44. Schlosshauer, M., & Fine, A. (2005). On Zureks derivation of the born rule. Foundations of Physics, 35, 197–213.CrossRefGoogle Scholar
  45. Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28, 1049–1070.CrossRefGoogle Scholar
  46. Streater, R. F., & Wightman, A. S. (1964). PCT, spin and statistics, and all that. New York: W. A. Benjamin Inc.Google Scholar
  47. Von Neumann, J. (1932). Grundlehren. Math. Wiss. XXXVIIIGoogle Scholar
  48. von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.Google Scholar
  49. Wallace, D. (2003). Everettian rationality. Studies in History and Philosophy of Modern Physics, 34, 87–105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Diederik Aerts
    • 1
  • Massimiliano Sassoli de Bianchi
    • 2
  1. 1.Center Leo Apostel for Interdisciplinary Studies and Department of MathematicsBrussels Free UniversityBrusselsBelgium
  2. 2.Laboratorio di Autoricerca di BaseLuganoSwitzerland

Personalised recommendations