Foundations of Science

, Volume 18, Issue 4, pp 781–790 | Cite as

The Implications of Interactions for Science and Philosophy



Reductionism has dominated science and philosophy for centuries. Complexity has recently shown that interactions—which reductionism neglects—are relevant for understanding phenomena. When interactions are considered, reductionism becomes limited in several aspects. In this paper, I argue that interactions imply nonreductionism, non-materialism, non-predictability, non-Platonism, and non-Nihilism. As alternatives to each of these, holism, informism, adaptation, contextuality, and meaningfulness are put forward, respectively. A worldview that includes interactions not only describes better our world, but can help to solve many open scientific, philosophical, and social problems caused by implications of reductionism.


Complexity Interactions Reductionism Worldview 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, D., Apostel, L., De Moor, B., Hellemans, S., Maex, E., Van Belle, H., Van der Veken, J. (1994). World views. From fragmentation to integration. Brussels, Belgium: VUB Press.
  2. Bar-Yam, Y. (1997). Dynamics of complex systems. Studies in Nonlinearity. Westview Press.
  3. Bedau M. A., Humphreys P. (2007) Emergence: Contemporary readings in philosophy and science. MIT Press, Cambridge, MA, USAGoogle Scholar
  4. von Bertalanffy L. (1968) General system theory: Foundations, development, applications. George Braziller, New YorkGoogle Scholar
  5. Berlekamp, E. R., Conway, J. H. & Guy, R. K. (1982). Winning ways for your mathematical plays. Volume 2: Games in particular. London: Academic Press.
  6. Chaitin, G. J. (2004). Irreducible complexity in pure mathematics. Arxiv preprint math/0411091.
  7. Gershenson, C. (2002). Contextuality: A philosophical paradigm, with applications to philosophy of cognitive science. POCS Essay, COGS, University of Sussex.
  8. Gershenson, C. (2007a). Design and control of self-organizing systems. CopIt Arxives, Mexico.
  9. Gershenson, C. (2007b). The world as evolving information. In Y. Bar-Yam (Ed.), Proceedings of international conference on complex systems ICCS2007.
  10. Gershenson, C. (2011). Enfrentando a la complejidad: Predecir vs. adaptar. In X. Martorell & A. Massip (Eds.), Complejidad y Lenguaje (in Press).
  11. Gershenson, C., Aerts, D., & Edmonds, B., Eds. (2007). Philosophy and Complexity. Worldviews, Science and Us. Singapore: World Scientific.
  12. Gershenson, C. & Heylighen, F. (2003). When can we call a system self-organizing? In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim & J. Ziegler (Eds.), Advances in artificial life, 7th European conference, ECAL 2003 LNAI 2801 (pp. 606–614). Berlin: Springer.
  13. Gershenson, C. & Heylighen, F. (2005). How can we think the complex? In K. Richardson (Ed.), Managing organizational complexity: Philosophy, theory and application (Chap. 3, pp. 47–61). Information Age Publishing.
  14. Gleick J. (1987) Chaos: Making a new science. Viking, New YorkGoogle Scholar
  15. Heylighen, F., Cilliers, P. & Gershenson, C. (2007). Complexity and philosophy. In J. Bogg & R. Geyer (Eds.), Complexity, science and society. Oxford: Radcliffe Publishing.
  16. Kauffman S. A. (2008) Reinventing the sacred: A new view of science, reason, and religion. Basic Books, New YorkGoogle Scholar
  17. Mitchell M. (2009) Complexity: A guided tour. Oxford University Press, Oxford, UKGoogle Scholar
  18. Morin, E. (2007). Restricted complexity, general complexity. In C. Gershenson, D. Aerts & B. Edmonds (Eds.), Philosophy and complexity: Worldviews, science and us (pp. 5–29). Singapore: World Scientific. (Translated from French by Carlos Gershenson).Google Scholar
  19. Neuman, Y. (2008). Reviving the living: Meaning making in living systems (Studies in multidisciplinarity, vol. 6). Amsterdam: Elsevier.Google Scholar
  20. Nydahl O. (2008) The way things are: A living approach to Buddhism for today’s world. O Books, LondonGoogle Scholar
  21. Toffler A. (1980) The third wave. Bantam, New YorkGoogle Scholar
  22. Vidal, C. (2008). Wat is een wereldbeeld? (what is a worldview?). In H. Van Belle & J. Van der Veken (Eds.), Nieuwheid denken. De wetenschappen en het creatieve aspect van de werkelijkheid. Leuven, Belgium: Acco.
  23. von Baeyer, H. C. (2004). Information: The new language of science. Cambridge, MA: Harvard University Press.
  24. von Neumann, J. (1966). In A. W. Burks (Ed.), The theory of self-reproducing automata. Champaign: University of Illinois Press.Google Scholar
  25. Weinberg S. (1994) Dreams of a final theory: The search for the fundamental laws of nature. Vintage, New YorkGoogle Scholar
  26. Wilensky, U. (1999). NetLogo.
  27. Wolfram S. (1986) Theory and application of cellular automata. World Scientific, SingaporeGoogle Scholar
  28. Wolfram, S. (2002). A new kind of science. Wolfram Media.
  29. Wuensche, A., Lesser, M. (1992). The global dynamics of cellular automata: An atlas of basin of attraction fields of one-dimensional cellular automata. Reading, MA: Santa Fe Institute Studies in the Sciences of Complexity Addison-Wesley.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Computer Sciences DepartmentInstituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de MéxicoMexico, D.F.Mexico

Personalised recommendations