Foundations of Science

, Volume 18, Issue 4, pp 757–780

On the Import of Constraints in Complex Dynamical Systems

Article

Abstract

Complexity arises from interaction dynamics, but its forms are co-determined by the operative constraints within which the dynamics are expressed. The basic interaction dynamics underlying complex systems is mostly well understood. The formation and operation of constraints is often not, and oftener under appreciated. The attempt to reduce constraints to basic interaction fails in key cases. The overall aim of this paper is to highlight the key role played by constraints in shaping the field of complex systems. Following an introduction to constraints (Sect. 1), the paper develops the roles of constraints in specifying forms of complexity (Sect. 2) and illustrates the roles of constraints in formulating the fundamental challenges to understanding posed by complex systems (Sect. 3).

Keywords

Complexity Complex systems Dynamical constraints Lagrangian dynamics Organization Dynamical understanding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold V. I. (1978) Mathematical methods of classical mechanics. Springer, BerlinCrossRefGoogle Scholar
  2. Barandiaran, X., & Ruiz-mirazo, K. (Eds.) (2008). Modelling autonomy: Simulating the essence of life and cognition. BioSystems, 91(2).Google Scholar
  3. Bechtel W. (2007) Biological mechanisms: Organised to maintain autonomy. In: Boogerd F., Bruggeman F., Hofmeyr J.-H., Westerhoff H. V. (Eds.), Systems biology: Philosophical foundations. Elsevier, Amsterdam, pp 269–302CrossRefGoogle Scholar
  4. Bechtel, W., & Abrahamsen, A. (2011). Complex biological mechanisms: Cyclic, oscillatory and autonomous. In C. A. Hooker (Ed.) Philosophy of complex systems. Handbook of the Philosophy of Science (Vol. 10, pp. 259–288). Amsterdam: North Holland/Elsevier.Google Scholar
  5. Bennett C. (1985) Dissipation, information, computational complexity and the definition of organization. In: Pines D. Emerging syntheses in science, proceedings of the founding workshops of the santa fe institute. Addison Wesley, Redwood CaliforniaGoogle Scholar
  6. Bennett, C. (1992). Logical depth and other algorithmically defined properties of finite objects. In Proceedings, workshop on physics and computation, IEEE, pp. 75–77.Google Scholar
  7. Bickhard M. H. (1993) Representational content in humans and machines. Experimental and Theoretical Artificial Intelligence 5: 285–333CrossRefGoogle Scholar
  8. Bishop R. C. (2005) Patching physics and chemistry together. Philosophy of Science 72: 710–722CrossRefGoogle Scholar
  9. Bishop R. C. (2008) Downward causation in fluid convection. Synthese 160: 229–248CrossRefGoogle Scholar
  10. Bishop R. C. (2011) Metaphysical and epistemological issues in complex systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 107–138Google Scholar
  11. Bloch, A. M. (2003). Nonholonomic mechanics and control. Springer, New York, See http://www.cds.caltech.edu/mechanics_and_control/about_this_book/ for corrections and additions, incl. internet supplement.
  12. Bongard J., Lipson H. (2007) Automated reverse engineering of non-linear dynamical systems. Proceedings of the National Academy of Science 104(24): 9943–9948CrossRefGoogle Scholar
  13. Butterfield, J. (2004a) Between laws and models: Some philosophical morals of Lagrangian mechanics. Available at http://philsci-archive.pitt.edu/archive/00001937/. Accessed Apr 2009.
  14. Butterfield, J. (2004b). On Hamilton-Jacobi theory as a classical root of quantum theory. In A. C. Elitzur, S. Dolev, & N. Kolenda (Eds.), Quo Vadis quantum mechanics? Possible developments in quantum theory in the 21st century. New York, Springer. Available at http://philsci-archive.pitt.edu/archive/00001193/. Accessed Apr 2009.
  15. Christensen, W. D., & Hooker, C. A. (2000a). Organised interactive construction: The nature of autonomy and the emergence of intelligence. In: A. Etxebberia, A. Moreno, & J. Umerez (Eds.), The contribution of artificial life and the sciences of complexity to the understanding of autonomous systems. Communication and Cognition, Special Edn (Vol. 17, No. 3–4, pp. 133–158).Google Scholar
  16. Christensen W., Hooker C. A. (2000b) An interactivist-constructivist approach to intelligence: Self-directed anticipative learning. Philosophical Psychology 13: 5–45CrossRefGoogle Scholar
  17. Christensen, W. D., & Hooker, C. A. (2002). Self-directed agents. In J. MacIntosh (Ed.), Naturalism, evolution and intentionality. Ottawa, Canadian Journal of Philosophy, Special Supplementary Vol. 27, pp. 19–52.Google Scholar
  18. Christensen W. D., Hooker C. A. (2004) Representation and the meaning of life. In: Clapin H., Staines P., Slezak P. (Eds.), Representation in mind: New approaches to mental representation. Elsevier, Sydney, pp 41–69CrossRefGoogle Scholar
  19. Clarke, D., & Proença, J. (2009). Coordination via interaction constraints I: Local logic. In F. Bonchi, D. Grohmann, & P. Spoletini, E. Tuosto (Eds.), ICE’09 structured interactions, EPTCS, 12, pp. 17–39. doi:10.4204/EPTCS.12.2.
  20. Coleman R. A., Korté H. (1999) Geometry and forces in relativistic and pre-relativistic theories. Foundations of Physics Letters 12(2): 147–163. doi:10.1023/A:1021609022945 CrossRefGoogle Scholar
  21. Collier J. D., Hooker C. A. (1999) Complex organised dynamical systems. Open Systems and Information Dynamics 6: 241–302CrossRefGoogle Scholar
  22. Dewar, R. L., Hudson, S. R., & Gibson, A. M. Action-gradient-minimizing pseudo-orbits and almost-invariant tori (preprint, submitted).Google Scholar
  23. Emmeche C., Koppe S., Stjernfelt F. (2000) Levels, emergence, and three versions of downward causation. In: Anderson P., Emmeche C., Finnemann N., Christiansen P. (Eds.), Downward causation: Minds, bodies, and matter. Aarhus University Press, Aarhus, pp 13–34Google Scholar
  24. Farrell R., Hooker C. A. (2007a) Applying self-directed anticipative learning to science: agency and the interactive exploration of possibility space in ape language research. Perspectives on Science 15(1): 86–123CrossRefGoogle Scholar
  25. Farrell R., Hooker C. A. (2007b) Applying self-directed anticipative learning to science: Learning how to learn across revolutions. Perspectives on Science 15(2): 220–253CrossRefGoogle Scholar
  26. Farrell R, Hooker C. A. (2009) Applying self-directed anticipative learning to science: identifying error and severe testing through interactive exploration of possibility. Foundations of Science 14(4): 249–271CrossRefGoogle Scholar
  27. Flannery, M. R. (2005). The enigma of nonholonomic constraints. American Journal of Physics, 73(3), 265–272. Available at http://www.physics.gatech.edu/people/faculty/flannery/publications/AJP73_March2005_265-272.pdf Google Scholar
  28. Flannery M. R. (2011a) D’Alembert–Lagrange analytical dynamics for nonholonomic systems. Journal of Mathematical Physics 52(3): 032705. doi:10.1063/1.3559128 CrossRefGoogle Scholar
  29. Flannery M. R. (2011b) The elusive d’Alembert-Lagrange dynamics of nonholonomic systems. American Journal of Physics 79(9): 932–944CrossRefGoogle Scholar
  30. Gánti T. (2003) The principles of life. Oxford University Press, New YorkCrossRefGoogle Scholar
  31. Gell-Mann M. (1994) The Quark and the Jaguar: Adventures in the simple and the complex. Henry Holt, New YorkGoogle Scholar
  32. Goldstein H. (1950) Classical mechanics. Addison-Wesley, Reading, MassGoogle Scholar
  33. Gray C. G., Taylor E. F. (2007) When action is not least. American Journal of Physics 75(5): 434–458CrossRefGoogle Scholar
  34. Groß R., Dorigo M. (2007) Fifty years of self-assembly experimentation. In: Shen W.-M., Lipson H., Stoy K., Yim M. Proceedings of the workshop on self-reconfigurable robots/systems and applications. USC Information Science Institute, USAGoogle Scholar
  35. Groß R., Dorigo M. (2008) Self-assembly at the macroscopic scale. Proceedings of IEEE 96(9): 1490–1508CrossRefGoogle Scholar
  36. Hooker C. A. (1994) Idealisation, naturalism, and rationality: Some lessons from minimal rationality. Synthese 99: 181–231Google Scholar
  37. Hooker C. A. (2004) Asymptotics, reduction and emergence. British Journal for the Philosophy of Science 55: 435–479CrossRefGoogle Scholar
  38. Hooker C. A. (2009) Interaction and bio-cognitive order. Synthese 166(3): 513–546CrossRefGoogle Scholar
  39. Hooker, C. A. (Ed.). (2011a) Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, AmsterdamGoogle Scholar
  40. Hooker C. A. (2011b) Introduction to philosophy of complex systems. Part A: Towards framing philosophy of complex systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 3–92CrossRefGoogle Scholar
  41. Hooker C. A. (2011c) Introduction to philosophy of complex systems. Part B: Aninitial scientific paradigm + philosophy of science for complex systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 843–912Google Scholar
  42. Hooker C. A. (2011d) Conceptualising reduction, emergence and self-organisation in complex dynamical systems. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 197–224Google Scholar
  43. Kaufman S. (2000) Investigations. Oxford University Press, New YorkGoogle Scholar
  44. Mackworth A. K. (2009) Agents bodies constraints dynamics evolution. AI Magazine, Spring, pp 7–28Google Scholar
  45. Marr D. (1982) Vision. MIT Press, Cambridge, MassGoogle Scholar
  46. Maynard-Smith J., Szathmary E. (1995) The major transitions in evolution. Freeman, New YorkGoogle Scholar
  47. Moreno A. (2007) A systemic approach to the origin of biological organization. In: Boogerd F., Bruggeman F., Hofmeyr J.-H., Westerhoff H. V. (Eds.), Systems biology: Philosophical foundations. Elsevier, Amsterdam, pp 243–268CrossRefGoogle Scholar
  48. Moreno A., Ruiz-Mirazo K. (1999) Metabolism and the problem of its universalization. Biosystems 49: 45–61CrossRefGoogle Scholar
  49. Moreno A., Ruiz-Mirazo K., Barandiaran X. (2011) The impact of the paradigm of complexity on the foundational frameworks of biology and cognitive science. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 313–336Google Scholar
  50. Newman S. A. (1970) Note on complex systems. Journal of Theoretical Biology 28: 411–413CrossRefGoogle Scholar
  51. Newman S. A. (2011a) Complexity in organismal evolution. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 337–356Google Scholar
  52. Newman S. A. (2011b) The animal egg as evolutionary innovation: A solution to the ‘embryonic hourglass’ puzzle. Journal of Experimental Zoology, B: Molecular and Developmental Evolution 316(7): 467–483CrossRefGoogle Scholar
  53. Newman, S. A., & Bhat, R. (2008). Dynamical patterning modules: Physico-genetic determinants of morphological development and evolution. Physical Biology, 5, 015008. Available at http://stacks.iop.org/PhysBio/5/015008.
  54. Nolfi S. (2011) Behavior and cognition as a complex adaptive system: Insights from robotic experiments. In: Hooker C. A. (Ed.), Philosophy of complex systems. Handbook of the philosophy of science. North Holland/Elsevier, Amsterdam, pp 445–467Google Scholar
  55. O’Connor T., & Wong, H. Y. (2002) Emergence. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/properties-emergent/
  56. Pattee, H. H. (1971). Physical theories of biological co-ordination. Quarterly Reviews of Biophysics, 4, 255–276. Reprinted in M. Grene, E. Mendelsohn (Eds.), Topics in the philosophy of biology, Reidel, Amsterdam, 1976. doi:10.1017/S0033583500000640 (published online) 2009.
  57. Pattee H. H. (1973) The physical basis and origin of hierarchical control. In: Pattee H. H. (Ed.), Hierarchy theory: The challenge of complex systems. Geo. Braziller, New York, pp 71–108Google Scholar
  58. Pfeifer R., Bongard J. C. (2007) How the body shapes the way we think: A new view of intelligence. MIT Press, Cambridge, MassGoogle Scholar
  59. Raynor A. (1977) Degrees of freedom: Living in dynamic boundaries. Imperial College Press, LondonGoogle Scholar
  60. Rueger A. (2005) Perspectival models and theory unification. British Journal for the Philosophy of Science 56(3): 579–594CrossRefGoogle Scholar
  61. Ruiz-mirazo K., Moreno A. (2004) Basic autonomy as a fundamental step in the synthesis of life. Artificial Life 10(3): 235–259CrossRefGoogle Scholar
  62. Shalizi, C. R. (2006). Methods and techniques of complex systems science: An overview. In T. Deisboeck, J. Kresh (Eds.), Complex systems science in bio-medicine. Springer, New York. Also available at http://arXiv.org/abs/nlin/0307015.
  63. Schmidt M., Lipson H. (2009) Distilling free form natural laws from experimental data. Science 324(5923): 81–85CrossRefGoogle Scholar
  64. Skewes J., Hooker C. A. (2009) Bio-agency and the problem of action. Biology and Philosophy 24(3): 283–300CrossRefGoogle Scholar
  65. Subhankar R., & Shamanna, J. (2006) Understanding D’Alembert’s principle: System of pendulums. Available at http://arxiv.org/PS_cache/physics/pdf/0606/0606010v2.pdf.
  66. Soltakhanov S. K., Yushkov M. P., Zegzhda S. A. (2009) Mechanics of non-holonomic systems. Springer, HeidelbergCrossRefGoogle Scholar
  67. Szathmáry, E (2005). Life: In search of the simplest cell. Nature, 433(3), 469–470.Google Scholar
  68. Tegnér J., Yeung M. K. S., Hasty J., Collins J. J. (2003) Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Science 100(10): 5944–5949CrossRefGoogle Scholar
  69. Turing A. (1952) The chemical basis for morphogenesis. Philosophical transactions of the Royal Society of London, B: Biological Sciences, 237(641), 37–72. Available at http://www.jstor.org/stable/92463.
  70. Wackerbauer R., Witt A., Atmanspacher H., Kurths J., Scheingraber H. (1994) A comparative classification of complexity measures. Chaos, Solitons & Fractals 4(1): 133–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.School of Humanities and Social Sciences, McMullin BldUniversity of NewcastleCallaghanAustralia

Personalised recommendations