Foundations of Science

, Volume 18, Issue 4, pp 625–640 | Cite as

The Unexpected Applicability of Paraconsistent Logic: A Chomskyan Route to Dialetheism



Paraconsistent logics are characterized by rejection of ex falso quodlibet, the principle of explosion, which states that from a contradiction, anything can be derived. Strikingly these logics have found a wide range of application, despite the misgivings of philosophers as prominent as Lewis and Putnam. Such applications, I will argue, are of significant philosophical interest. They suggest ways to employ these logics in philosophical and scientific theories. To this end I will sketch out a ‘naturalized semantic dialetheism’ following Priest’s early suggestion that the principles governing human natural language may well be inconsistent. There will be a significant deviation from Priest’s work, namely, the assumption of a broadly Chomskyan picture of semantics. This allows us to explain natural language inconsistency tolerance without commitment to contentious views in formal logic.


Chomsky dialetheism inconsistency Tolerance language paraconsistent priest 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, J., et al. (2006). Intelligent paraconsistent logic controller and autonomous mobile robot Emmy II. In Lecture notes in computer science (Vol. 4252, pp. 851–857).Google Scholar
  2. Batens D. et al (2000) A Survey of Inconsistency-Adaptive Logics. In: Batens D. et al. (Eds.) Frontiers of Paraconsistent Logics. Research Studies Press Ltd, BaldockGoogle Scholar
  3. Beall, J. C., Priest, G., Armour-Garb, B. (Eds.) (2004) The law of non-contradiction: New philosophical essays. Clarendon Press, OxfordGoogle Scholar
  4. Beall J. C. (2004) At the Intersection of Truth and Falsity. In: Beall J. C., Priest G., Armour-Garb B. (Eds.) The law of non-contradiction: New philosophical essays. Clarendon Press, Oxford, pp 1–19CrossRefGoogle Scholar
  5. Bertossi, L., Hunter, A., & Schaub, T. (2004). Introduction to inconsistency tolerance. In L. Bertossi, A. Hunter & T. Schaub (Eds.), Inconsistency tolerance. Berlin: Springer.Google Scholar
  6. Bremer M. (2005) An introduction to paraconsistent logics. Peter Lang, Frankfurt am MainGoogle Scholar
  7. Brown B. (2002) On paraconsistency. In: Jacquette D. (Ed.) A companion to philosophical logic. Blackwell, New York, p 629Google Scholar
  8. Burge, T. (1979). Individualism and the mental. In Midwest studies in philosophy (Vol. 4, pp. 73–121).Google Scholar
  9. Chomsky N.: (1995a) Language and nature. Mind 104: 1–61CrossRefGoogle Scholar
  10. Chomsky N. (1995b) The minimalist program. The MIT Press, Cambridge, MAGoogle Scholar
  11. Chomsky, N. (2007). Approaching UG from below. In U. Sauerland & H. Martin Grtner (Eds.), Interfaces + Recursion = Language? (pp. 1–29). New York: Mouton de Gruyter.Google Scholar
  12. Chomsky, N. (1997). Language and thought. In Perspectives on power (pp. 1–30). Montreal: Black Rose Books.Google Scholar
  13. Da Costa N. (1974) On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic XV(4): 497–510CrossRefGoogle Scholar
  14. Da Costa, N., Krause, D., & Bueno, O. (2004) Paraconsistent logics and paraconsistency: Technical and philosophical developments. In CLE E-Prints (Vol. 4, No. 3).Google Scholar
  15. Davidson D. (1967) Truth and meaning. Synthese 17: 304–323CrossRefGoogle Scholar
  16. Gold E. M. (1967) Language identification in the limit. Information and Control 10(5): 447–474CrossRefGoogle Scholar
  17. Hewitt C. (2008) ORGs for scalable, robust, privacy-friendly cloud computing. IEEE Internet Computing 12(5): 96–99CrossRefGoogle Scholar
  18. Hornstein N., Nunes J., Grohman K. (2005) Understanding minimalism. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Imam, F., MacCaull, W., & Kennedy, M. A. (2007). Merging healthcare ontologies: inconsistency tolerance and implementation issues. In CBMS: Twentieth IEEE international symposium on computer-based medical systems (CBMS’07) (pp. 530–535).Google Scholar
  20. Kassoff, M., & Genesereth, M. (2007). Predicalc: A logical spreadsheet management system. The Knowledge Engineering Review, 22(3).Google Scholar
  21. Lewis D. (1982) Logic for equivocators. Nous 16(3): 431–441CrossRefGoogle Scholar
  22. Lewis D. (2004) Letters to Beall and Priest. In: Beall J. C., Priest G., Armour-Garb B. (Eds.) The law of non-contradiction: New philosophical essays. Clarendon Press, Oxford, pp 176–177CrossRefGoogle Scholar
  23. Ludlow P. (1999) Semantics, tense and time. MIT Press, Cambridge, MAGoogle Scholar
  24. Mares E. (2004) Semantic Dialetheism. In: Beall J. C., Priest G., Armour-Garb B. (Eds.) The law of non-contradiction: New philosophical essays. Clarendon Press, Oxford, pp 264–275CrossRefGoogle Scholar
  25. McGilvray J. (1998) Meanings are syntactically individuated and found in the head. Mind & Language 13(2): 225–280CrossRefGoogle Scholar
  26. Priest G. (1987) In contradiction: A study of the transconsistent. Martinus Nijhoff Publishers Group, DordrechtCrossRefGoogle Scholar
  27. Priest G. (2001) An introduction to non-classical logic. Cambridge University Press, CambridgeGoogle Scholar
  28. Priest G. (1991) Minimally inconsistent LP. Studia Logica 50(2): 321–331CrossRefGoogle Scholar
  29. Priest G. (1997) Sylvan’s Box. Notre Dame Journal of Formal Logic LXII(4): 573–582Google Scholar
  30. Putnam H. (2000) Rethinking mathematical necessity. In: Crary A., Read R. (Eds.) The New Wittgenstein. Routledge, London, pp 218–231Google Scholar
  31. Putnam H. (1975) The meaning of ’Meaning’. Minnesota Studies in the Philosophy of Science 7: 131–193Google Scholar
  32. Read S. (1988) Relevant logic. Basil Blackwell, New YorkGoogle Scholar
  33. Rodriguez A. (2004) Inconsistency issues in spatial databases. In: Bertossi L., Hunter A., Schaub T. (Eds.) Inconsistency tolerance. Springer, Berlin, pp 237–269Google Scholar
  34. Stainton R. (2006) Meaning and reference: Some Chomskian themes. In: Lepore E., Smith B. (Eds.) The Oxford handbook of philosophy of language. Oxford University Press, Oxford, pp 913–940Google Scholar
  35. Stainton, R. (2011). In defense of public languages. Linguistics and Philosophy, 34(5), 479–488CrossRefGoogle Scholar
  36. Young, C. A. (2007). Spreadsheets using logic instead of math may revolutionize data management. Stanford Report. Accessed 25 April.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Western OntarioLondonCanada

Personalised recommendations