Foundations of Science

, Volume 18, Issue 1, pp 107–123 | Cite as

A Cauchy-Dirac Delta Function

  • Mikhail G. KatzEmail author
  • David Tall


The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.


Cauchy Charles Sanders Peirce Continuum Delta function Felix Klein Dirac Hyperreals Infinitesimal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albeverio, S., Høegh-Krohn, R., Fenstad, J., & Lindstrøm, T. (1986). Nonstandard methods in stochastic analysis and mathematical physics. Pure and Applied Mathematics, 122. Orlando, FL: Academic Press, Inc.Google Scholar
  2. Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21CrossRefGoogle Scholar
  3. Arkeryd L. (2005) Nonstandard analysis. American Mathematical Monthly 112(10): 926–928CrossRefGoogle Scholar
  4. Barany M. J. (2011) Revisiting the introduction to Cauchy’s Cours d’analyse. Historia Mathematica 38(3): 368–388CrossRefGoogle Scholar
  5. Błaszczyk, P., Katz, M., & Sherry, D. (2012). Ten misconceptions from the history of analysis and their debunking. Foundations of Science. doi: 10.1007/s10699-012-9285-8 and
  6. Borovik, A., Jin, R., & Katz, M. (2012). An integer construction of infinitesimals: Toward a theory of Eudoxus hyperreals. Notre Dame Journal of Formal Logic, 53(4).Google Scholar
  7. Borovik, A., & Katz, M. (2011). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science. doi: 10.1007/s10699-011-9235-x and
  8. Boyer C. (1949) The concepts of the calculus, a critical and historical discussion of the derivative and the integral. Hafner Publishing Company, New YorkGoogle Scholar
  9. Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535CrossRefGoogle Scholar
  10. Cauchy A.-L. (1815) Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (published 1827, with additional notes). Oeuvres Series 1 1: 4–318Google Scholar
  11. Cauchy, A. L. (1821). Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Paris: Imprimérie Royale.
  12. Cauchy A.-L. (1827) Mémoire sur les développements des fonctions en séries périodiques. Oeuvres Series 1 2: 12–19Google Scholar
  13. Cauchy, A.-L. (1837). Extrait d’une lettre à M. Coriolis, Oeuvres Complètes, Series 1, 4, 38–42; (Paris: Gauthier Villars, 1884).Google Scholar
  14. Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Series 1, Vol. 12, (pp. 30–36). Paris: Gauthier–Villars; 1900.Google Scholar
  15. Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378CrossRefGoogle Scholar
  16. Dauben, J. (1988). Abraham Robinson and nonstandard analysis: History, philosophy, and foundations of mathematics. In W. Aspray & P. Kitcher, (Eds.), History and philosophy of modern mathematics (Minneapolis, MN, 1985), 177–200, Minnesota Stud. Philos. Sci., XI, Univ. Minnesota Press, Minneapolis, MN.
  17. Dauben, J. (1995). Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton, NJ: Princeton University Press.Google Scholar
  18. Dieudonné J. (1984) Reviews: The prehistory of the theory of distributions. American Mathematical Monthly 91(6): 374–379CrossRefGoogle Scholar
  19. Dirac P. (1958) The principles of quantum mechanics. Clarendon Press, OxfordGoogle Scholar
  20. Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception I, the emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121CrossRefGoogle Scholar
  21. Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146Google Scholar
  22. Fisher G. (1979) Cauchy’s variables and orders of the infinitely small. The British Journal for the Philosophy of Science 30(3): 261–265CrossRefGoogle Scholar
  23. Fisher G. (1981) The infinite and infinitesimal quantities of du Bois-Reymond and their reception. Archive for History of Exact Sciences 24(2): 101–163CrossRefGoogle Scholar
  24. Fourier, J. (1822). Théorie analytique de la chaleur. Paris: Firmin Didot Père et Fils.Google Scholar
  25. Fraenkel, A. (1946). Einleitung in die Mengenlehre. New York: Dover [originally published by Springer, Berlin, 1928].Google Scholar
  26. Fraenkel A. (1967) Lebenskreise Aus den Erinnerungen eines jüdischen Mathematikers. Deutsche Verlags-Anstalt, StuttgartGoogle Scholar
  27. Freudenthal, H. (1971). Cauchy, Augustin-Louis. In Dictionary of Scientific Biography, C. C. Gillispie (Ed.), Vol. 3 (131–148). New York: Charles Scribner’s Sons.
  28. Gilain, C. (1989). Cauchy et le cours d’analyse de l’Ecole polytechnique. With an editorial preface by Emmanuel Grison. Société des Amis de la Bibliothèque de l’Ecole Polytechnique. Bulletin (5), 145.
  29. Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191CrossRefGoogle Scholar
  30. Giordano, P., & Katz, M. (2011). Two ways of obtaining infinitesimals by refining Cantor’s completion of the reals. Preprint,
  31. Giorello G. (1973) Una rappresentazione nonstandard delle distribuzioni temperate e la trasformazione di Fourier. Bollettino della Unione Matematica Italiana 4(7): 156–167Google Scholar
  32. Gray J. (2008) Plato’s ghost The modernist transformation of mathematics. Princeton University Press, Princeton, NJGoogle Scholar
  33. Havenel J. (2007) Peirce’s Clarifications of Continuity. Transactions of the Charles S. Peirce Society 44(1): 86–133Google Scholar
  34. Hawking, S. (Ed). (2007). The mathematical breakthroughs that changed history. Philadelphia, PA: Running Press (originally ublished 2005).Google Scholar
  35. Hewitt E. (1948) Rings of real-valued continuous functions I. Transactions of the American Mathematical Society 64: 45–99CrossRefGoogle Scholar
  36. Kanovei, V. (1988). Correctness of the Euler method of decomposing the sine function into an infinite product. (Russian) Uspekhi Mat. Nauk, 43(4)(262), 57–81, 255; translation in Russian Math. Surveys, 43(4), 65–94 (1988).Google Scholar
  37. Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1−.9.. in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273.
  38. Katz K., Katz M. (2010b) When is .999...less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30Google Scholar
  39. Katz, K., & Katz, M. (2011a). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. and
  40. Katz, K., & Katz, M. (2011b). Stevin numbers and reality. Foundations of Science. doi: 10.1007/s10699-011-9228-9 and
  41. Katz, K., & Katz, M. (2011c). Meaning in classical mathematics: is it at odds with Intuitionism? Intellectica, 56(2), 223–302.
  42. Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. doi: 10.1007/s10699-011-9223-1 and
  43. Katz, M., & Leichtnam, E. Commuting and non-commuting infinitesimals. American Mathematical Monthly (to appear).Google Scholar
  44. Katz, M., & Sherry, D. (2012). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis. doi: 10.1007/s10670-012-9370-y and
  45. Katz, M., & Sherry, D. Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, to appear.Google Scholar
  46. Katz, M., & Tall, D. (2011). The tension between intuitive infinitesimals and formal mathematical analysis. In B. Sriraman (Ed.), Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast Monographs in Mathematics Education, Vol. 12. Charlotte, NC: Information Age Publishing, Inc. and
  47. Keisler H. (1986) Jerome: Elementary calculus: An infinitesimal approach. Prindle Weber & Schimidt, BostonGoogle Scholar
  48. Keisler, H. (1994). Jerome: The hyperreal line Real numbers, generalizations of the reals, and theories of continua, 207–237, Synthese Lib, 242. Kluwer: Dordrecht.Google Scholar
  49. Klein, F. (1908). Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).Google Scholar
  50. Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica 14(3): 258–274CrossRefGoogle Scholar
  51. Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245CrossRefGoogle Scholar
  52. Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128CrossRefGoogle Scholar
  53. Lightstone A. H. (1972) Infinitesimals. American Mathematical Monthly 79: 242–251CrossRefGoogle Scholar
  54. Lightstone A. H., Wong K. (1975) Dirac delta functions via nonstandard analysis. Canadian Mathematical Bulletin 18(5): 759–762CrossRefGoogle Scholar
  55. Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems, pp. 98–113, Amsterdam: North-Holland.Google Scholar
  56. Lützen J. (1982) The prehistory of the theory of distributions Studies in the history of mathematics and physical sciences, Vol. 7. Springer, New YorkCrossRefGoogle Scholar
  57. Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers. Pasadena: Mathematics Department, California Institute of Technology’ second corrected edn.Google Scholar
  58. Méray H. C. R. (1869) Remarques sur la nature des quantités définies par la condition de servir de limites à des variables données. Revue des sociétiés savantes des départments, Section sciences mathématiques, physiques et naturelles, 4th ser 10: 280–289Google Scholar
  59. Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society 83(6): 1165–1198CrossRefGoogle Scholar
  60. Novikov, S. P. (2004). The second half of the 20th century and its conclusion: crisis in the physics and mathematics community in Russia and in the West. Amer. Math. Soc. Transl. Ser. 2, 212, Geometry, topology, and mathematical physics, 1–24, Amer. Math. Soc., Providence, RI, 2004. (Translated from Istor.-Mat. Issled. (2) No. 7(42), 326–356, 369; by A. Sossinsky.)Google Scholar
  61. Peirce C. S. (1897) Three grades of clearness. In “The Logic of Relatives”. The Monist 7: 161–217CrossRefGoogle Scholar
  62. Péraire Y. (2006) A mathematical framework for Dirac’s calculus. Bulletin of the Belgian Mathematical society. Simon Stevin 13(5): 1007–1031Google Scholar
  63. Robinson, A. (1961). Non-standard analysis. Nederl. Akad. Wetensch. Proc. Ser. A, 64 = Indag. Math. 23, 432–440; [reprinted in selected works, see item [73], pp. 3–11].Google Scholar
  64. Robinson, A. (1967). The metaphysics of the calculus. In I. Lakatos (Ed.), Problems in the philosophy of mathematics, (pp. 28–46). Amsterdam: North-Holland.Google Scholar
  65. Robinson, A. (1979). Selected papers of Abraham Robinson. Vol. II. Nonstandard analysis and philosophy. Edited and with introductions y W. A. J. Luxemburg and S. Körner. New Haven, Conn: Yale University Press.Google Scholar
  66. Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199CrossRefGoogle Scholar
  67. Schmieden C., Laugwitz D. (1958) Eine Erweiterung der Infinitesimalrechnung. Mathematische Zeitschrift 69: 1–39CrossRefGoogle Scholar
  68. Sherry D. (1987) The wake of Berkeley’s analyst: Rigor mathematicae?. Studies in History and Philosophy of Science 18(4): 455–480CrossRefGoogle Scholar
  69. Sinaceur H. (1973) Cauchy et Bolzano. Revue d’ Histoire des Science et de leurs Applications 26(2): 97–112CrossRefGoogle Scholar
  70. Skolem Th. (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161Google Scholar
  71. Smithies, F. Review of Lützen (item [63] above) (1984).
  72. Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis Sympos., Oberwolfach, 1970), pp. 47–64. Studies in Logic and Foundations of Math., Vol. 69. Amsterdam: North-Holland.Google Scholar
  73. Takeuti G. (1962) Dirac space. Proceedings of the Japan Academy 38: 414–418CrossRefGoogle Scholar
  74. Todorov T. D. (1990) A nonstandard delta function. Proceedings of the American Mathematical Society 110(4): 1143–1144CrossRefGoogle Scholar
  75. Yamashita, H. (2007). Comment on: “Pointwise analysis of scalar fields: a nonstandard approach” [J. Math. Phys. 47(2006), no. 9, 092301; 16 pp]. Journal of Mathematical Physics, 48(8), 084101.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  2. 2.Mathematics Education Research CentreUniversity of WarwickCoventryUK

Personalised recommendations