Ten Misconceptions from the History of Analysis and Their Debunking
- 613 Downloads
- 23 Citations
Abstract
The widespread idea that infinitesimals were “eliminated” by the “great triumvirate” of Cantor, Dedekind, and Weierstrass is refuted by an uninterrupted chain of work on infinitesimal-enriched number systems. The elimination claim is an oversimplification created by triumvirate followers, who tend to view the history of analysis as a pre-ordained march toward the radiant future of Weierstrassian epsilontics. In the present text, we document distortions of the history of analysis stemming from the triumvirate ideology of ontological minimalism, which identified the continuum with a single number system. Such anachronistic distortions characterize the received interpretation of Stevin, Leibniz, d’Alembert, Cauchy, and others.
Keywords
Abraham Robinson Adequality Archimedean continuum Bernoullian continuum Cantor Cauchy Cognitive bias Completeness Constructivism Continuity Continuum du Bois-Reymond Epsilontics Felix Klein Fermat-Robinson standard part Infinitesimal Leibniz–Łoś transfer principle Limit Mathematical rigor Nominalism Non-Archimedean Simon Stevin Stolz Sum theorem WeierstrassPreview
Unable to display preview. Download preview PDF.
References
- Albeverio S., Høegh-Krohn R., Fenstad J., Lindstrøm T. (1986) Nonstandard methods in stochastic analysis and mathematical physics. Pure and Applied Mathematics, 122. Academic Press, Inc, Orlando, FLGoogle Scholar
- Andersen K. (2011) One of Berkeley’s arguments on compensating errors in the calculus. Historia Mathematica 38(2): 219–231CrossRefGoogle Scholar
- Anderson R. (1976) A non-standard representation for Brownian motion and Itô integration. Israel Journal of Mathematics 25(1–2): 15–46CrossRefGoogle Scholar
- Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21CrossRefGoogle Scholar
- Arkeryd L. (2005) Nonstandard analysis. American Mathematical Monthly 112(10): 926–928CrossRefGoogle Scholar
- Bacon, F. (1620). Novum Organum.Google Scholar
- Baltus C. (2004) D’Alembert’s proof of the fundamental theorem of algebra. Historia Mathematica 31(4): 414–428CrossRefGoogle Scholar
- Barany M. J. (2011) Revisiting the introduction to Cauchy’s Cours d’analyse. Historia Mathematica 38(3): 368–388CrossRefGoogle Scholar
- Bell E.T. (1945) The development of mathematics. McGraw-Hill Book Company, Inc, New YorkGoogle Scholar
- Bell J. L. (2008) A primer of infinitesimal analysis (2nd ed.). Cambridge University Press, CambridgeCrossRefGoogle Scholar
- Bell, J. L. (2009a). Continuity and infinitesimals. Stanford Encyclopedia of Philosophy. Revised 20 July 2009.Google Scholar
- Bell, J. L. (2009b). Le continu cohésif. Intellectica, 2009/1(51).Google Scholar
- Benci V., Di Nasso M. (2003) Alpha-theory: An elementary axiomatics for nonstandard analysis. Expositiones Mathematicae 21(4): 355–386CrossRefGoogle Scholar
- Berkeley, G. (1734). The analyst, a discourse addressed to an infidel Mathematician.Google Scholar
- Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-classical mathematics 2009 (Hejnice, 18–22 June 2009), pp. 21–24.Google Scholar
- Borel, E. (1902) Leçons sur les séries à termes positifs, ed. Robert d’Adhemar, Paris (Gauthier-Villars).Google Scholar
- Borovik, A., Jin, R., & Katz, M. (2012). An integer construction of infinitesimals: Toward a theory of Eudoxus hyperreals. Notre Dame Journal of Formal Logic, 53(4).Google Scholar
- Borovik, A., & Katz, M. (2011). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, see http://dx.doi.org/10.1007/s10699-011-9235-x and http://arxiv.org/abs/1108.2885.
- Bos H. J. M. (1974) Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences 14: 1–90CrossRefGoogle Scholar
- Boyer C. (1949) The concepts of the calculus. Hafner Publishing Company, New YorkGoogle Scholar
- Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535CrossRefGoogle Scholar
- Cajori. (1993). A history of mathematical notations (Vol. 1–2). La Salle, IL: The Open Court Publishing Company, 1928/1929. Reprinted by Dover.Google Scholar
- Cauchy A. L. (1821) Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Imprimérie Royale, ParisGoogle Scholar
- Cauchy A. L. (1823) Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal. Imprimérie Royale, ParisGoogle Scholar
- Cauchy A.L. (1815) Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (published 1827, with additional Notes). Oeuvres 1(1): 4–318Google Scholar
- Cauchy, A. L. (1829). Leçons sur le calcul différentiel. Paris: Debures. In Oeuvres complètes (Ser. 2, Vol. 4, pp. 263–609). Paris: Gauthier-Villars, 1899.Google Scholar
- Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes (Ser. 1, Vol. 12, pp. 30–36). Paris: Gauthier–Villars, 1900.Google Scholar
- Connes A. (1995) Noncommutative geometry and reality. Journal of Mathematical Physics 36(11): 6194–6231CrossRefGoogle Scholar
- Crossley J. (1987) The emergence of number (2nd ed.). World Scientific Publishing Co, SingaporeCrossRefGoogle Scholar
- Crowe, M. (1988). Ten misconceptions about mathematics and its history. History and philosophy of modern mathematics (Minneapolis, MN, pp. 260–277, 1985). Minnesota studies in philosophical science, XI. Minneapolis, MN: University of Minnesota Press.Google Scholar
- Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378CrossRefGoogle Scholar
- D’Alembert, J. (1754). Differentiel. In Encyclopédie, 4.Google Scholar
- Dauben J. (1995) Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton University Press, PrincetonGoogle Scholar
- Dauben, J. (1996). Arguments, logic and proof: Mathematics, logic and the infinite. History of mathematics and education: Ideas and experiences (Essen, 1992; Vol. 11, pp. 113–148), Stud. Wiss. Soz. Bildungsgesch. Mathematics. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
- Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience: New York. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html.
- Dedekind R. (1872) Stetigkeit und irrationale Zahlen, Freid. Vieweg & Sohn, BraunschweigGoogle Scholar
- Dedekind R. (1963) Essays on the theory of numbers. I: Continuity and irrational numbers. II: The nature and meaning of numbers. Authorized translation by Wooster Woodruff Beman Dover Publications, Inc, New YorkGoogle Scholar
- Dehn M. (1900) Die Legendre’schen Sätze über die Winkelsumme im Dreieck. Mathematische Annalen 53(3): 404–439CrossRefGoogle Scholar
- Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213CrossRefGoogle Scholar
- Ehrlich, P. (2005). Continuity. In D. M. Borchert (Ed.), Encyclopedia of philosophy (2nd ed., pp. 489–517). Farmington Hills, MI: Macmillan Reference USA (The online version contains some slight improvements).Google Scholar
- Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121CrossRefGoogle Scholar
- Ehrlich P. (2012) The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic 18(1): 1–45CrossRefGoogle Scholar
- Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146Google Scholar
- Euclid. (2007). Euclid’s elements of geometry. Edited, and provided with a modern English translation, by Richard Fitzpatrick, http://farside.ph.utexas.edu/euclid.html.
- Euler, L. (1770). Elements of algebra (3rd English edition). English translated by John Hewlett and Francis Horner. Orme Longman, 1822.Google Scholar
- Faltin F., Metropolis N., Ross B., Rota G.-C. (1975) The real numbers as a wreath product. Advances in Mathematics 16: 278–304CrossRefGoogle Scholar
- Fearnley-Sander D. (1979) Hermann Grassmann and the creation of linear algebra. The American Mathematical Monthly 86(10): 809–817CrossRefGoogle Scholar
- Feferman, S. (2009). Conceptions of the continuum [Le continu mathématique. Nouvelles conceptions, nouveaux enjeux]. Intellectica, 51, 169–189. See also http://math.stanford.edu/~feferman/papers/ConceptContin.pdf.
- Felscher W. (1979) Naive Mengen und abstrakte Zahlen. III. [Naive sets and abstract numbers. III] Transfinite Methoden. With an erratum to Vol. II. Bibliographisches Institut, MannheimGoogle Scholar
- Felscher W. (2000) Bolzano, Cauchy, epsilon, delta. American Mathematical Monthly 107(9): 844–862CrossRefGoogle Scholar
- Fisher G. (1979) Cauchy’s variables and orders of the infinitely small. The British Journal for the Philosophy of Science 30(3): 261–265CrossRefGoogle Scholar
- Fourier, J. (1822). Théorie analytique de la chaleur.Google Scholar
- Fowler D. H. (1992) Dedekind’s theorem: \({\sqrt 2\times\sqrt 3=\sqrt6}\) . American Mathematical Monthly 99(8): 725–733CrossRefGoogle Scholar
- Fraenkel A. (1967) Lebenskreise. Aus den Erinnerungen eines jüdischen Mathematikers. Deutsche Verlags-Anstalt, StuttgartGoogle Scholar
- Freudenthal H. (1971) Did Cauchy plagiarise Bolzano?. Archive for History of Exact Sciences 7: 375–392CrossRefGoogle Scholar
- Gerhardt, C. I. (ed.) (1850–1863). Leibnizens mathematische Schriften. Berlin and Halle: Eidmann.Google Scholar
- Gilain, C. (1989). Cauchy et le cours d’analyse de l’Ecole polytechnique. With an editorial preface by Emmanuel Grison. Bulletin Society des amis de la Bibliothèque, Ecole Polytechnique, Vol. 5Google Scholar
- Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191CrossRefGoogle Scholar
- Giordano P. (2010) The ring of Fermat reals. Advances in Mathematics 225(4): 2050–2075CrossRefGoogle Scholar
- Giordano, P., & Katz, M. (2011). Two ways of obtaining infinitesimals by refining Cantor’s completion of the reals. See http://arxiv.org/abs/1109.3553.
- Gordon, E. I., Kusraev, A. G., & Kutateladze, S. S. (2002). Infinitesimal analysis. Updated and revised translation of the 2001 Russian original. Translated by Kutateladze. Mathematics and its applications (Vol. 544). Dordrecht: Kluwer.Google Scholar
- Grabiner J. (1983) Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematics Monthly 90(3): 185–194CrossRefGoogle Scholar
- Grattan-Guinness I. (2004) The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica 31: 163–185CrossRefGoogle Scholar
- Gray J. (2008) Plato’s ghost. The modernist transformation of mathematics. Princeton University Press, Princeton, NJGoogle Scholar
- Guicciardini, N. (2011). Private communication, 27 november.Google Scholar
- Hawking, S., (Ed.) (2007). The mathematical breakthroughs that changed history. Philadelphia, PA: Running Press (originally published 2005).Google Scholar
- Hewitt E. (1948) Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society 64: 45–99CrossRefGoogle Scholar
- Hoborski, A. (1923). Aus der theoretischen Arithmetik (German). Opusc. math. Kraków, 2 11–12 (1938).Google Scholar
- Hrbáček K. (1978) Axiomatic foundations for nonstandard analysis. Fundamenta Mathematicae 98(1): 1–19Google Scholar
- Hrbacek K. (2007) Stratified analysis? The strength of nonstandard analysis. Springer, Vienna, pp 47–63CrossRefGoogle Scholar
- Hrbacek K., Lessmann O., O’Donovan R. (2010) Analysis with ultrasmall numbers. American Mathematics Monthly 117(9): 801–816CrossRefGoogle Scholar
- R., R. (1940) OEuvres complètes. Martinus Nijhoff, La HayeGoogle Scholar
- Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1−.9. in a post-triumvirate era. Educational Studies in Mathematics, 74 (3), 259–273. See http://arxiv.org/abs/arXiv:1003.1501.
- Katz K., Katz M. (2010) When is 0.999…less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30Google Scholar
- Katz, K., & Katz, M. (2011a). Cauchy’s continuum. Perspectives on Science, 19(4), 426–452. See http://www.mitpressjournals.org/toc/posc/19/4 and http://arxiv.org/abs/1108.4201.Google Scholar
- Katz, K., & Katz, M. (2011b). Stevin numbers and reality. Foundations of Science. See http://dx.doi.org/10.1007/s10699-011-9228-9 and http://arxiv.org/abs/1107.3688.
- Katz, K., & Katz, M. (2011c) Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica, 56(2), 223–302. See http://arxiv.org/abs/1110.5456.
- Katz, K., & Katz, M. (2012). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. See http://dx.doi.org/10.1007/s10699-011-9223-1 and http://arxiv.org/abs/1104.0375.
- Katz, K., & Sherry, D. (2012). Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis (to appear).Google Scholar
- Katz, M., & Tall, D. (2011). The tension between intuitive infinitesimals and formal mathematical analysis. In B. Sriraman (Ed.), Crossroads in the history of mathematics and mathematics education. The Montana Mathematics Enthusiast Monographs in Mathematics Education (Vol. 12). Charlotte, NC: Information Age Publishing, Inc. See http://arxiv.org/abs/1110.5747 and http://www.infoagepub.com/products/Crossroads-in-the-History-of-Mathematics.
- Katz V. J. (1993) Using the history of calculus to teach calculus. Contributions from History, Philosophy and Sociology of Science and Education. Science & Education 2(3): 243–249CrossRefGoogle Scholar
- Keisler H. J. (1986) Elementary calculus: An infinitesimal approach (2nd Ed.). Prindle, Weber & Schimidt, BostonGoogle Scholar
- Keisler, H. J. (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, Synthese Lib. (Vol. 242, pp. 207–237). Dordrecht: Kluwer.Google Scholar
- Keisler, H. J. (2008a). The ultraproduct construction. In Proceedings of the ultramath conference, Pisa, Italy.Google Scholar
- Keisler, H. J. (2008b). Quantifiers in limits. Andrzej Mostowski and Foundational Studies (pp. 151–170). Amsterdam: IOS.Google Scholar
- Klein, F. (1908). (Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis). Translation by E. R. Hedrick & C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).Google Scholar
- Kleiner I., Movshovitz-Hadar N. (1994) The role of paradoxes in the evolution of mathematics. American Mathematical Monthly 101(10): 963–974CrossRefGoogle Scholar
- Knobloch E. (2002) Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Foundations of the formal sciences, 1 (Berlin, 1999). Synthese 133(1–2): 59–73CrossRefGoogle Scholar
- Koetsier T. (2009) Lakatos, Lakoff and Núñez: Towards a Satisfactory Definition of Continuity. In: Hanna G., Jahnke H., Pulte H. (eds) Explanation and proof in mathematics. Philosophical and Educational Perspectives. Springer, BerlinGoogle Scholar
- Lagrange, J.-L. (2009). (1811) Mécanique Analytique. Courcier. Reissued by Cambridge University Press.Google Scholar
- Lakatos I. (1976) Proofs and refutations. The logic of mathematical discovery. Edited by John Worrall and Elie Zahar. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- Lakatos, I. (1978). Cauchy and the continuum: The significance of nonstandard analysis for the history and philosophy of mathematics. The Mathematical Intelligencer, 1(3), 151–161 (paper originally presented in 1966).Google Scholar
- Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia Mathematica 14(3): 258–274CrossRefGoogle Scholar
- Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245CrossRefGoogle Scholar
- Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128CrossRefGoogle Scholar
- Laugwitz D. (1997) On the historical developement of infinitesimal mathematics. Part II. The conceptual thinking of Cauchy. Translated from the German by Abe Shenitzer with the editorial assistance of Hardy Grant. American Mathematical Monthly 104(7): 654–663CrossRefGoogle Scholar
- Lawvere F. W. (1980) Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body. Third Colloquium on Categories (Amiens, 1980), Part I. Cahiers Topologie Géom. Différentielle 21(4): 377–392Google Scholar
- Leibniz G. (2001) The Labyrinth of the continuum (Arthur, R., translator and editor). Yale University Press, New HavenGoogle Scholar
- Leibniz. (1701). Mémoire de M.G.G. Leibniz touchant son sentiment sur le calcul differéntiel. Mémoires de Trévoux, 1701(November), 270–272. Reprinted in (Gerhardt, 1850–1863, Vol. 5, p. 350).Google Scholar
- Leibniz. (1710). GM V, pp. 381-2 (in Gerhardt (1850–1863)).Google Scholar
- Levy S. H. (1991) Charles S. Peirce’s Theory of Infinitesimals. International Philosophical Quarterly 31: 127–140CrossRefGoogle Scholar
- Lightstone A. H. (1972) Infinitesimals. American Mathematical Monthly 79: 242–251CrossRefGoogle Scholar
- Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.Google Scholar
- Lutz R., Albuquerque L. (2003) Modern infinitesimals as a tool to match intuitive and formal reasoning in analysis. Logic and mathematical reasoning (Mexico City, 1997). Synthese 134(1–2): 325–351CrossRefGoogle Scholar
- Lützen J. (1982) The prehistory of the theory of distributions. Studies in the history of mathematics and physical sciences Vol. 7. Springer, New YorkCrossRefGoogle Scholar
- Lützen, J. (2003). The foundation of analysis in the 19th century. A history of analysis. History of Mathematics (Vol. 24, pp. 155–195). Providence, RI: American Mathematical Society.Google Scholar
- Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers. Pasadena: Mathematics Department, California Institute of Technology’ second corrected ed.Google Scholar
- Madison E., Stroyan K. (1977) Reviews: Elementary calculus (Review of first edition of Keisler (1986)).. American Mathematical Monthly 84(6): 496–500CrossRefGoogle Scholar
- Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: Unveiling and optical diagrams in mathematics. Foundations of Science 10(1): 7–23CrossRefGoogle Scholar
- Malet A. (2006) Renaissance notions of number and magnitude. Historia Mathematica 33(1): 63–81CrossRefGoogle Scholar
- Mancosu P. (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. The Clarendon Press/Oxford University Press, New YorkGoogle Scholar
- Mancosu, P. (eds) (2008) The philosophy of mathematical practice. Oxford University Press, OxfordGoogle Scholar
- Mancosu P. (2009) Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable?. The Review of Symbolic Logic 2(4): 612–646CrossRefGoogle Scholar
- Mancosu, P., & Vailati, E. (1990). Detleff Clüver: An early opponent of the Leibnizian differential calculus. Centaurus, 33(4), 325–344.Google Scholar
- Marsh, J. (1742). Decimal arithmetic made perfect. London.Google Scholar
- McClenon R. B. (1923) A contribution of Leibniz to the history of complex numbers. American Mathematical Monthly 30(7): 369–374CrossRefGoogle Scholar
- Mormann T. (2008) Idealization in Cassirer’s philosophy of mathematics. Philosophia Mathematica (3) 16(2): 151–181CrossRefGoogle Scholar
- Naets J. (2010) How to define a number? A general epistemological account of Simon Stevin’s art of defining. Topoi 29(1): 77–86CrossRefGoogle Scholar
- Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin of American Mathematical Society 83(6): 1165–1198CrossRefGoogle Scholar
- Newton, I. (1671). A treatise on the methods of series and fluxions. In Whiteside (1969) (Vol. III), pp. 33–35.Google Scholar
- Newton, I. (1946). Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world. A revision by F. Cajori of A. Motte’s 1729 translation. Berkeley: University of California Press.Google Scholar
- Newton, I. (1999). The principia: Mathematical principles of natural philosophy. Translated by I. B. Cohen & A. Whitman, preceded by A guide to Newton’s Principia by I. B. Cohen. Berkeley: University of California Press.Google Scholar
- Peirce, C. S. (1976). The new elements of mathematics, Vol. III/1. Mathematical miscellanea. Edited by Carolyn Eisele. Atlantic Highlands, NJ: Mouton Publishers/The Hague-Paris/Humanities Press.Google Scholar
- Pourciau B. (2001) Newton and the notion of limit. Historia Mathematica 28(1): 18–30CrossRefGoogle Scholar
- Putnam H. (1975) What is mathematical truth? Proceedings of the American Academy Workshop on the Evolution of Modern Mathematics (Boston, Mass., 1974). Historia Mathematica 2(4): 529–533CrossRefGoogle Scholar
- Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, AmsterdamGoogle Scholar
- Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199CrossRefGoogle Scholar
- Russell B. (1903) The principles of mathematics. Routledge, LondonGoogle Scholar
- Rust H. (2005) Operational semantics for timed systems. Lecture Notes in Computer Science 3456: 23–29. doi: 10.1007/978-3-540-32008-1_4 CrossRefGoogle Scholar
- Schubring G. (2005) Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th century France and Germany sources and studies in the history of mathematics and physical sciences. Springer, New YorkGoogle Scholar
- Sepkoski D. (2005) Nominalism and constructivism in seventeenth-century mathematical philosophy. Historia Mathematica 32(1): 33–59CrossRefGoogle Scholar
- Sherry D. (1987) The wake of Berkeley’s Analyst: Rigor mathematicae?. Studies in History and Philosophical Science 18(4): 455–480CrossRefGoogle Scholar
- Sherry D. (1993) Don’t take me half the way: On Berkeley on mathematical reasoning. Studies in History and Philosophical Science 24(2): 207–225CrossRefGoogle Scholar
- Sinaceur H. (1973) Cauchy et Bolzano. Reviews of Histoire in Science and Applications 26((2): 97–112CrossRefGoogle Scholar
- Skolem Th. (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161Google Scholar
- Smale S. (1981) The fundamental theorem of algebra and complexity theory. Bulletin of the American Mathematical Society (N.S.) 4(1): 1–36CrossRefGoogle Scholar
- Smith D. E. (1920) Source book in mathematics. Mc Grow-Hill, New YorkGoogle Scholar
- Stevin, S. (1585). L’Arithmetique. In A. Girard (Ed.), Les Oeuvres Mathematiques de Simon Stevin (Leyde, 1634), part I (pp. 1–101).Google Scholar
- Stevin, S. L’Arithmetique. In A. Girard (Ed.), 1625, part II. Online at http://www.archive.org/stream/larithmetiqvedes00stev#page/353/mode/1up.
- Stevin, S. (1958). The principal works of Simon Stevin (Vols. IIA, IIB). In D. J. Struik, C. V. Swets, & Zeitlinger (Eds.), Mathematics (Vols. IIA: v+pp. 1–455 (1 plate), IIB: 1958 iv+pp, pp. 459–976). Amsterdam.Google Scholar
- Strømholm P. (1968) Fermat’s methods of maxima and minima and of tangents. A reconstruction. Archive for History of Exact Sciences 5(1): 47–69CrossRefGoogle Scholar
- Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970; Vol. 69, pp. 47–64). Studies in Logic and Foundations of Mathematics. Amsterdam: North-Holland.Google Scholar
- Tall D. (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. The Mathematical Gazette 64: 22–49CrossRefGoogle Scholar
- Tall D. (1991) The psychology of advanced mathematical thinking. In: Tall D. O. (eds) Advanced mathematical thinking mathematics education library, 11. Kluwer, DordrechtCrossRefGoogle Scholar
- Tall, D. (2009). Dynamic mathematics and the blending of knowledge structures in the calculus. In Transforming Mathematics Education through the use of Dynamic Mathematics. ZDM (pp. 1–11) (June 2009).Google Scholar
- Tao T. (2010) An epsilon of room, II. Pages from year three of a mathematical blog. American Mathematical Society, Providence, RIGoogle Scholar
- Tarski A. (1930) Une contribution à la théorie de la mesure. Fundamenta Mathematicae 15: 42–50Google Scholar
- Urquhart, A. Mathematics and physics: Strategies of assimilation. In Mancosu (2008), pp. 417–440.Google Scholar
- van der Waerden B. L. (1985) A history of algebra. From al-Khwarizmi to Emmy Noether. Springer, BerlinGoogle Scholar
- Weil A. (1973) Book review: The mathematical career of Pierre de Fermat. Bulletin of the American Mathematical Society 79(6): 1138–1149CrossRefGoogle Scholar
- Weil A. (1984) Number theory. An approach through history. From Hammurapi to Legendre. Birkhäuser Boston, Inc, BostonGoogle Scholar
- Whiteside, D. T. (Ed.) (1969). The mathematical papers of Isaac Newton. In D. T. Whiteside with the assistance in publication of M. A. Hoskin and A. Prag (Eds.) (Vol. III, pp. 1670–1673). London: Cambridge University Press.Google Scholar