Foundations of Science

, Volume 17, Issue 3, pp 245–276 | Cite as

Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus

  • Alexandre Borovik
  • Mikhail G. KatzEmail author


Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, the seeds of the theory of rates of growth of functions as developed by Paul du Bois-Reymond. One sees, with E. G. Björling, an infinitesimal definition of the criterion of uniform convergence. Cauchy’s foundational stance is hereby reconsidered.


Archimedean axiom Bernoulli Cauchy Continuity Continuum du Bois-Reymond Epsilontics Felix Klein Hyperreals Infinitesimal Stolz Sum theorem Transfer principle Ultraproduct Weierstrass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M., Katz, V., Wilson, R. (eds) (2009) Who gave you the epsilon? & Other tales of mathematical history. The Mathematical Association of America, USAGoogle Scholar
  2. Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21CrossRefGoogle Scholar
  3. Arkeryd L. (2005) Nonstandard analysis. American Mathematical Monthly 112(10): 926–928CrossRefGoogle Scholar
  4. Artin, E., & Schreier, O. (1926). Algebraische Konstruktion reeller Körper. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Univeristät, Leipzig 5, pp. 85–99. In S. Lang & J. T. Tate (Eds.), The collected papers of Emil Artin. Reeding, MA: Addison-Wesley, 1965, pp. 258–272.Google Scholar
  5. Bishop, E. (1975). The crisis in contemporary mathematics. In Proceedings of the American Academy workshop on the evolution of modern mathematics (Boston, Mass., 1974), Historia Math. (Vol. 2, no. 4, pp. 507–517).Google Scholar
  6. Bishop, E. (1985). Schizophrenia in contemporary mathematics. In Errett Bishop: Reflections on him and his research (San Diego, Calif., 1983) (pp. 1–32), Contemp. Math., Vol. 39, Am. Math. Soc., Providence, RI (published posthumously; originally distributed in 1973).Google Scholar
  7. Björling E. G. (1852) Sur une classe remarquable des séries infinies. JMPA 17(1): 454–472Google Scholar
  8. Björling, E. G. (1852). Om det Cauchyska kriteriet påde fall, dåfunctioner af en variabel låta utveckla sig i serie, fortgående efter de stigande digniteterna af variabeln. Kongl. Vetens. Akad. Förh. Stockholm series, Vol. 1b, pp. 166–228Google Scholar
  9. Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-classical mathematics (pp. 21–24). Hejnice, 18–22 June 2009.Google Scholar
  10. Borel E. (1902) Leçons sur les séries à termes positifs, ed. Robert d’Adhemar, Paris (Gauthier-Villars)Google Scholar
  11. Bos H. J. M. (1974) Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences 14: 1–90CrossRefGoogle Scholar
  12. Boyer C. (1949) The concepts of the calculus. Hafner Publishing Company, New YorkGoogle Scholar
  13. Boyer, C. (1959). The history of the calculus and its conceptual development. New York: Dover Publications Inc.Google Scholar
  14. Bradley, R., & Sandifer, C. (2009). Cauchy’s cours d’analyse. An annotated translation. Sources and Studies in the History of Mathematics and Physical Sciences. Berlin: Springer.Google Scholar
  15. Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535CrossRefGoogle Scholar
  16. Brillouët-Belluot, N. Review of Felscher (2000) for MathSciNet. Online at
  17. Cauchy, A. L. (1821). Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Paris: Imprimérie Royale. Online at
  18. Cauchy A. L. (1823) Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal. Imprimérie Royale, ParisGoogle Scholar
  19. Cauchy A. L. (1826) Leo̧ns sur les applications du calcul infinitésimal à la géométrie. Imprimérie Royale, ParisGoogle Scholar
  20. Cauchy, A. L. (1829). Leçons sur le calcul différentiel. Paris: Debures. In Oeuvres complètes, Series 2 (Vol. 4, pp. 263–609). Paris: Gauthier-Villars, 1899.Google Scholar
  21. Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Series 1 (Vol. 12, pp. 30–36). Paris: Gauthier–Villars, 1900.Google Scholar
  22. Chwistek L. (1948) The limits of science. Kegan Paul, LondonGoogle Scholar
  23. Cleave J. (1979) The concept of “variable” in nineteenth century analysis. The British Journal for the Philosophy of Science 30(3): 266–278CrossRefGoogle Scholar
  24. Cooke, R. L. (1980) Review of Medvedev (1987) for MathSciNet, see
  25. Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378CrossRefGoogle Scholar
  26. Dauben J. (1995) Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton University Press, Princeton, NJGoogle Scholar
  27. Dauben, J. (1996). Arguments, logic and proof: Mathematics, logic and the infinite. History of mathematics and education: Ideas and experiences (Essen, 1992) (pp. 113–148), Stud. Wiss. Soz. Bildungsgesch. Math., Vol. 11. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  28. Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Reprinted by Dover, NY, 2005, see
  29. Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213CrossRefGoogle Scholar
  30. du Bois-Reymond P. (1882) Die allgemeine Funktionentheorie. Erster Teil. Metaphysik und Theorie der mathematischen Grundbegriffe: Grösse, Grenze, Argument. Laupp, TübingenGoogle Scholar
  31. Dubinsky E. (1991). Reflective abstraction in advanced mathematical thinking. Advanced mathematical thinking (see Tall 1991), Springer.Google Scholar
  32. Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121CrossRefGoogle Scholar
  33. Ehrlich, P. (2011). The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic (to appear).Google Scholar
  34. Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146Google Scholar
  35. Feferman, S. (2009). Conceptions of the continuum [Le continu mathématique. Nouvelles conceptions, nouveaux enjeux]. Intellectica, 51, 169–189. See also
  36. Felscher W. (1979) Naive Mengen und abstrakte Zahlen. III. [Naive sets and abstract numbers. III] Transfinite Methoden. With an erratum to Vol. II. Mannheim: Bibliographisches Institut.Google Scholar
  37. Felscher W. (1985) Dialogues, strategies, and intuitionistic provability. Annauls Pure Applications Logic 28(3): 217–254CrossRefGoogle Scholar
  38. Felscher, W. (1986). Dialogues as a Foundation for Intuitionistic Logic, in Handbook of philosophical logic, Vol. 5. In M. Dov (Ed.), Gabbay and Franz Guenthner. Kluwer (second edition in 2001).Google Scholar
  39. Felscher W. (2000) Bolzano, Cauchy, epsilon, delta. American Mathematical Monthly 107(9): 844–862CrossRefGoogle Scholar
  40. Fisher G. (1979) Cauchy’s variables and orders of the infinitely small. The British Journal for the Philosophy of Science 30(3): 261–265CrossRefGoogle Scholar
  41. Fisher G. (1981) The infinite and infinitesimal quantities of du Bois-Reymond and their reception. Archive for History of Exact Sciences 24(2): 101–163CrossRefGoogle Scholar
  42. Fraenkel, A. (1946). Einleitung in die Mengenlehre. New York, NY: Dover Publications (originally published by Springer, Berlin, 1928).Google Scholar
  43. Frayne, T., Morel, A. C., & Scott, D. S. (1962–1963). Reduced direct products. Fundamenta Mathematica, 51, 195–228.Google Scholar
  44. Freudenthal, H. (1971). Augustin-Louis Cauchy. In C. C. Gillispie (Ed.), Dictionary of scientific biography (Vol. 3, pp. 131–148). New York: Charles Scribner’s sons.Google Scholar
  45. Freudenthal H. (1971) Did Cauchy plagiarise Bolzano?. Archive for History of Exact Sciences 7: 375–392CrossRefGoogle Scholar
  46. Gelfand, I., & Kolmogoroff, A. (1939). On rings of continuous functions on topological spaces. [J] C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 22, pp. 11–15.Google Scholar
  47. Gilain, C. (1989). Cauchy et le cours d’analyse de l’Ecole polytechnique. With an editorial preface by Emmanuel Grison. Bull. Soc. Amis Bibl. Ecole Polytech., no. 5, 145 pp. See
  48. Giordano P. (2010) The ring of Fermat reals. Advances in Mathematics 225(4): 2050–2075CrossRefGoogle Scholar
  49. Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191CrossRefGoogle Scholar
  50. Giordano, P. (2011). Fermat-Reyes method in the ring of Fermat reals. To appear in Advances in Mathematics.Google Scholar
  51. Goldblatt R. (1998) Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate texts in mathematics, 188. Springer, New YorkGoogle Scholar
  52. Grabiner J. (1983) Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematical Monthly 90(3): 185–194CrossRefGoogle Scholar
  53. Grattan-Guinness, I. (1978/1979). Letter. Math. Intelligencer, 1(4), 247–248Google Scholar
  54. Grattan-Guinness, I. (1987) The Cauchy-Stokes-Seidel story on uniform convergence again: was there a fourth man? Bulletin de la Société mathématique de Belgique Series A, 38(1986), 225–235.Google Scholar
  55. Grattan-Guinness I. (2004) The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica 31: 163–185CrossRefGoogle Scholar
  56. Gray E., Tall D. (1994) Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. The Journal for Research in Mathematics Education 26(2): 115–141Google Scholar
  57. Gray J. (2008) Plato’s ghost. The modernist transformation of mathematics. Princeton University Press, Princeton, NJGoogle Scholar
  58. Hardy, G. H. (1910). Orders of infinity, the “Infinitärcalcül” of Paul Du Bois-Reymond. Cambridge: Cambridge University Press. (Second Edition, 1924. First Edition reprinted by Hafner, New York, 1971).Google Scholar
  59. Hawking, S. (ed) (2007) The mathematical breakthroughs that changed history. Running Press, Philadelphia, PAGoogle Scholar
  60. Hewitt E. (1948) Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society 64: 45–99CrossRefGoogle Scholar
  61. Hewitt, E. (1990). So far, so good: My life up to now. The Mathematical Intelligencer, 12(3), 58–63. See
  62. Isbell J. R. (1954) More on the continuity of the real roots of an algebraic equation. Proceedings of the American Mathematical Society 5: 439CrossRefGoogle Scholar
  63. Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1−.9 in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273. See arXiv:1003.1501.Google Scholar
  64. Katz K., Katz M. (2010b) When is .999 . . .less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30Google Scholar
  65. Katz, K., & Katz, M. (2011a). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science. doi: 10.1007/s10699-011-9223-1. See and
  66. Katz, K., & Katz, M. (2011b). Cauchy’s continuum. Perspectives on Science, 19(4).Google Scholar
  67. Katz, K., & Katz, M. (2011c). Stevin numbers and reality. Foundations of Science. doi: 10.1007/s10699-011-9228-9 Online First. See and
  68. Katz, K., & Katz, M. (2011d). Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica (to appear).Google Scholar
  69. Katz, M., & Tall, D. The tension between intuitive infinitesimals and formal mathematical analysis. In B. Sriraman (Ed.)
  70. Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach, 2nd edn. Boston: Prindle, Weber & Schimidt.Google Scholar
  71. Keisler, H. J. (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, Synthese Lib. (Vol. 242, pp. 207–237). Dordrecht: Kluwer.Google Scholar
  72. Keisler, H. J. (2008). The ultraproduct construction. In Proceedings of the ultramath conference, Pisa, Italy.Google Scholar
  73. Klein, F. (1932). Elementary mathematics from an advanced standpoint. Vol. I. Arithmetic, algebra, analysis, (E. R. Hedrick & C. A. Noble, Trans). New York: Macmillan (From the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908)).Google Scholar
  74. Kurepa, D. (1982). Around Bolzano’s approach to real numbers. Czechoslovak Mathematical Journal, vol. 4, 32(107), 655–666Google Scholar
  75. Lakatos, I. (1976). Proofs and refutations. In J. Worrall & E. Zahar (Eds.), The logic of mathematical discovery. Cambridge-New York-Melbourne: Cambridge University Press.Google Scholar
  76. Lakatos, I. (1978). Cauchy and the continuum: the significance of nonstandard analysis for the history and philosophy of mathematics. Math. Intelligencer 1, no. 3, 151–161 (paper originally presented in 1966).Google Scholar
  77. Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia Mathmatica 14(3): 258–274CrossRefGoogle Scholar
  78. Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245CrossRefGoogle Scholar
  79. Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128CrossRefGoogle Scholar
  80. Laugwitz D. (1997) On the historical developement of infinitesimal mathematics. Part II. The conceptual thinking of Cauchy. Translated from the German by Abe Shenitzer with the editorial assistance of Hardy Grant. American Mathmatics Monthly 104(7): 654–663CrossRefGoogle Scholar
  81. Lightstone A. H. (1972) Infinitesimals. American Mathmatics Monthly 79: 242–251CrossRefGoogle Scholar
  82. Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.Google Scholar
  83. Lützen, J. (2003). The foundation of analysis in the 19th century. A history of analysis (pp. 155–195). Hist. Math., 24, Amer. Math. Soc., Providence, RI.Google Scholar
  84. Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers. Pasadena: Mathematics Department, California Institute of Technology’ second corrected ed.Google Scholar
  85. Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: Unveiling and optical diagrams in mathematics. Foundations of Science 10(1): 7–23CrossRefGoogle Scholar
  86. Mal’tsev, A. I. [Malcev, Mal’cev] (1936). Untersuchungen aus dem Gebiete der mathematischen Logik. [J] Rec. Math. Moscou (Matematicheskii Sbornik), 1(43), 323–335.Google Scholar
  87. Medvedev, F. A. (1987). Nonstandard analysis and the history of classical analysis. Patterns in the development of modern mathematics (Russian) (pp. 75–84). Moscow: Nauka.Google Scholar
  88. Medvedev, F. A. (1993). N. N. Luzin on non-Archimedean time. (Russian) Istor.-Mat. Issled. 34, 103–128.Google Scholar
  89. Medvedev, F. A. (1998). Nonstandard analysis and the history of classical analysis. (A. Shenitzer, Trans.). The American Mathematical Monthly, 105(7), 659–664.Google Scholar
  90. Meschkowski H. (1965) Aus den Briefbuchern Georg Cantors. Archive for History of Exact Sciences 2: 503–519CrossRefGoogle Scholar
  91. Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society 83(6): 1165–1198CrossRefGoogle Scholar
  92. Newton, I. (1946). Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world, a revision by F. Cajori of A. Motte’s 1729 translation. Berkeley: University of California Press.Google Scholar
  93. Newton, I. (1999). The Principia: Mathematical principles of natural philosophy (I. B. Cohen & A. Whitman, Trans.). Preceded by A guide to Newton’s Principia by I. B. Cohen. Berkeley: University of California Press.Google Scholar
  94. Núñez R., Edwards L., Matos J. (1999) Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics 39(1–3): 45–65. doi: 10.1023/A:1003759711966 CrossRefGoogle Scholar
  95. Pourciau B. (2001) Newton and the notion of limit. Historia Mathmatica 28(1): 18–30CrossRefGoogle Scholar
  96. Pringsheim, A. (1897). On two theorems of Abel pertaining to the continuity of sums of series. (Ueber zwei Abel’sche Sätze, die Stetigkeit von Reihensummen betreffend.) (German) [J] Münch. Ber. [Sitz.-Ber. Königl. Akad. Wiss. München] 27, 343–356.Google Scholar
  97. Robert, A. M. (2003). Nonstandard analysis. Mineola, NY: Dover Publications. ISBN 0-486-43279-3.Google Scholar
  98. Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, AmsterdamGoogle Scholar
  99. Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199CrossRefGoogle Scholar
  100. Russell B. (1903) The principles of mathematics. Routledge, LondonGoogle Scholar
  101. Sad L. A., Teixeira M. V., Baldino R. B. (2001) Cauchy and the problem of point-wise convergence. Archives Internationales d’Histoire des sciences 51(147): 277–308Google Scholar
  102. Schmieden C., Laugwitz D. (1958) Eine Erweiterung der Infinitesimalrechnung. Mathematische Zeitschrift 69: 1–39CrossRefGoogle Scholar
  103. Schubring G. (2005) Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany. Sources and studies in the history of mathematics and physical sciences. Springer, New YorkGoogle Scholar
  104. Schwarz, H. A.: Letter to G. Cantor dated 1 april 1870. In Meschkowski (1965).Google Scholar
  105. Sfard A. (1991) On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics 22: 1–36CrossRefGoogle Scholar
  106. Sherry D. (1987) The wake of Berkeley’s analyst: Rigor mathematicae?.  Studies in History and Philosophy of Science 18(4): 455–480CrossRefGoogle Scholar
  107. Siegmund-Schultze, R. (2000). Review of Felscher (2000) for Zentralblatt MATH. See
  108. Sinaceur H. (1973) Cauchy et Bolzano. Revue d’Histoire des sciences et de leurs Applications 26(2): 97–112CrossRefGoogle Scholar
  109. Skolem Th (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161Google Scholar
  110. Smithies F. (1986) Cauchy’s conception of rigour in analysis. Archive for History of Exact Sciences 36(1): 41–61CrossRefGoogle Scholar
  111. Stolz, O. (1885). Vorlesungen über Allgemeine Arithmetik, Erster Theil: Allgemeines und Arithhmetik der Reellen Zahlen. Leipzig: Teubner.Google Scholar
  112. Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), pp. 47–64. Studies in Logic and Foundations of Math. (Vol. 69). North-Holland, Amsterdam.Google Scholar
  113. Tall D (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. The Mathematical Gazette 64: 22–49CrossRefGoogle Scholar
  114. Tall, D. (1991). The psychology of advanced mathematical thinking, in Advanced mathematical thinking. In D. O. Tall (Ed.), Mathematics education library (Vol. 11). Dordrecht: Kluwer.Google Scholar
  115. Tall D. (2009) Dynamic mathematics and the blending of knowledge structures in the calculus. Transforming mathematics education through the use of dynamic mathematics. ZDM 41(4): 481–492CrossRefGoogle Scholar
  116. Tarski A. (1930) Une contribution à la théorie de la mesure. Fundamenta Mathematicae 15: 42–50Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK
  2. 2.Department of MathematicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations