Foundations of Science

, Volume 17, Issue 2, pp 109–123 | Cite as

Stevin Numbers and Reality

Article

Abstract

We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.

Keywords

Charles Sanders Peirce Continuity Fermat-Robinson standard part Intermediate value theorem Leibniz-Los transfer principle Real decimals Triumvirate nominalistic scholarship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21CrossRefGoogle Scholar
  2. Arkeryd L. (2005) Nonstandard analysis. The American Mathematical Monthly 112(10): 926–928CrossRefGoogle Scholar
  3. Bair J., Henry V. (2010) Implicit differentiation with microscopes. The Mathematical Intelligencer 32(1): 53–55CrossRefGoogle Scholar
  4. Bell J. L. (2008) A primer of infinitesimal analysis (2nd Edn.). Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Bell, J. L. Continuity and infinitesimals. Stanford Encyclopedia of philosophy. Revised 20 july 2009.Google Scholar
  6. Berkeley, G. (1734). The Analyst, a Discourse Addressed to an Infidel Mathematician. Tonson: London.Google Scholar
  7. Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-Classical Mathematics 2009 (pp. 21–24). Hejnice, 18-22 june.Google Scholar
  8. Boyer, C. (1949). The concepts of the calculus. Hafner Publishing Company.Google Scholar
  9. Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for history of exact sciences 61(5): 519–535CrossRefGoogle Scholar
  10. Burgess J., Rosen G. (1997) A subject with no object. Strategies for nominalistic interpretation of mathematics. The Clarendon Press, Oxford University Press, New YorkGoogle Scholar
  11. Cauchy A. L. (1821) Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Imprimérie Royale, ParisGoogle Scholar
  12. Cauchy, A.-L. (1815). Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie (published 1827, with additional Notes). Oeuvres 1(1), 4–318.Google Scholar
  13. Cauchy A.-L. (1827) Mémoire sur les développements des fonctions en séries périodiques. Oeuvres 2(1): 12–19Google Scholar
  14. Cauchy, A. L. (1829). Leçons sur le calcul différentiel. Paris: Debures. In Oeuvres complètes, Series 2, Vol. 4, (pp. 263–609). Paris: Gauthier-Villars, 1899.Google Scholar
  15. Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Series 1, Vol. 12, (pp. 30–36). Paris: Gauthier–Villars, 1900.Google Scholar
  16. Chihara, C. (2007). The Burgess-Rosen critique of nominalistic reconstructions. Philosophia Mathematica 15(3), no.(1), 54–78.Google Scholar
  17. Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378CrossRefGoogle Scholar
  18. Dauben J. (1977) C. S. Peirce’s philosophy of infinite sets. A study of Peirce’s interest in the infinite related to the birth of American mathematics and contemporary work of Cantor and Dedekind. Mathematics Magazine 50(3): 123–135CrossRefGoogle Scholar
  19. Dauben J. (1982) Peirce’s place in mathematics. Historia Mathematica 9(3): 311–325CrossRefGoogle Scholar
  20. Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html
  21. Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213CrossRefGoogle Scholar
  22. Ehrlich P. (2006) The rise of non-archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for history of exact sciences 60(1): 1–121CrossRefGoogle Scholar
  23. Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146Google Scholar
  24. Eves, H., Newsom, C. (1958). An introduction to the foundations and fundamental concepts of mathematics. Rinehart and Company, Inc., New York. Revised edition, 1965.Google Scholar
  25. Fearnley-Sander D. (1979) Hermann Grassmann and the creation of linear algebra. The American Mathematical Monthly 86(10): 809–817CrossRefGoogle Scholar
  26. Fowler D. H. (1992) Dedekind’s theorem: \({\sqrt2\times\sqrt3 = \sqrt6}\) . The American Mathematical Monthly 99(8): 725–733CrossRefGoogle Scholar
  27. Freudenthal, H. (1971) Cauchy, Augustin-Louis. In C. C. Gillispie (Ed.), Dictionary of Scientific Biography Vol. 3, pp. 131–148. New York: Charles Scribner’s sons.Google Scholar
  28. Gandz S. (1936) The invention of the decimal fractions and the application of the exponential calculus by Immanuel Bonfils of Tarascon (c. 1350). Isis 25: 16–45CrossRefGoogle Scholar
  29. Goldblatt R. (1998) Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics, 188. Springer, New YorkGoogle Scholar
  30. Havenel J. (2008) Peirce’s Clarifications of Continuity. Transactions of the Charles S. Peirce Society: A Quarterly Journal in American Philosophy 44(1): 86–133Google Scholar
  31. Hawking, S. (Ed.) 2007. The mathematical breakthroughs that changed history. Philadelphia, PA: Running Press (originally published 2005).Google Scholar
  32. Hellman G. (1989) Mathematics without numbers. Towards a modal-structural interpretation. The Clarendon Press, Oxford University Press, New YorkGoogle Scholar
  33. Hewitt E. (1948) Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society 64: 45–99CrossRefGoogle Scholar
  34. Hobson, E. W. (1994). On the infinite and the infinitesimal in mathematical analysis. Proceedings London Mathematical Society, Volume s1-35 (1902), Number 1, pp. 117–139 (reprinted in Real numbers, generalizations of the reals, and theories of continua, 3–26, Synthese Lib., 242, Kluwer Acad. Publ., Dordrecht).Google Scholar
  35. Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1-.9. in a post-triumvirate era. Educational Studies in Mathematics 74(3):259–273. See arXiv:1003.1501.Google Scholar
  36. Katz K., Katz M. (2010b) When is .999...less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30Google Scholar
  37. Katz, K., & Katz, M. A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science. see http://www.springerlink.com/content/tj7j2810n8223p43/ and http://arxiv.org/abs/1104.0375.
  38. Katz, K., & Katz, M. Cauchy’s continuum. Perspectives on Science (in press).Google Scholar
  39. Katz, M., Tall, David: The tension between intuitive infinitesimals and formal mathematical analysis. In Bharath Sriraman (Ed.), Crossroads in the History of Mathematics and Mathematics Education (2011, to appear).Google Scholar
  40. Keisler, H. Jerome Elementary Calculus: An Infinitesimal Approach. (2nd ed.). Prindle, Weber & Schimidt, Boston, 1986.Google Scholar
  41. Keisler, H. Jerome (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, 207–237, Synthese Lib., 242. Dordrecht: Kluwer Academic Publisher.Google Scholar
  42. Klein, F. (1932). Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York] from the third German edition [Springer, Berlin, 1924] (originally published in 1908).Google Scholar
  43. Lakoff G., Núñez R. (2000) Where mathematics comes from. How the embodied mind brings mathematics into being. Basic Books, New YorkGoogle Scholar
  44. Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia mathematica 14(3): 258–274CrossRefGoogle Scholar
  45. Laugwitz D. (1989) Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820. Archive for history of exact sciences 39(3): 195–245CrossRefGoogle Scholar
  46. Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128CrossRefGoogle Scholar
  47. Laugwitz D. (2000) Comments on the paper: “Two letters by N. N. Luzin to M. Ya. Vygodskiĭ”. The American Mathematical Monthly 107(3): 267–276CrossRefGoogle Scholar
  48. Lightstone A. H. (1972) Infinitesimals. The American Mathematical Monthly 79: 242–251CrossRefGoogle Scholar
  49. Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.Google Scholar
  50. Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: unveiling and optical diagrams in mathematics. Foundations of science 10(1): 7–23CrossRefGoogle Scholar
  51. Malet A. (2006) Renaissance notions of number and magnitude. Historia mathematica 33(1): 63–81CrossRefGoogle Scholar
  52. Moore M. (2002) Archimedean intuitions. Theoria (Stockholm) 68(3): 185–204Google Scholar
  53. Moore M. (2007) The Completeness of the Real Line. Crí tica: Revista Hispanoamericana de Filosofí a 39(117): 61–86Google Scholar
  54. Peirce C.S. (1878) How to make our ideas clear. Popular Science Monthly 12: 286–302Google Scholar
  55. Peirce C.S. (1897) Three Grades of Clearness. In “The Logic of Relatives” in The Monist 7: 161–217Google Scholar
  56. Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, AmsterdamGoogle Scholar
  57. Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199CrossRefGoogle Scholar
  58. Schubring G. (2005) Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New YorkGoogle Scholar
  59. Sherry D. (1987) The wake of Berkeley’s Analyst: rigor mathematicae?. Studies in History and Philosophy of Science 18(4): 455–480CrossRefGoogle Scholar
  60. Sinaceur H. (1973) Cauchy et Bolzano. Revue d’Histoire des Sciences et de leurs Applications 26(2): 97–112CrossRefGoogle Scholar
  61. Skolem Th. (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161Google Scholar
  62. Stevin, S. (1585). L’Arithmetique. In A. Girard (Ed.), Les Oeuvres Mathematiques de Simon Stevin (Leyde, 1634), part I, p. 1–101.Google Scholar
  63. Stevin, S. (1958). The principal works of Simon Stevin. Vols. IIA, IIB: Mathematics. Edited by D. J. Struik C. V. Swets & Zeitlinger, Amsterdam. Vol. IIA: v+pp. 1–455 (1 plate). Vol. IIB: 1958 iv+pp. 459–976.Google Scholar
  64. Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970). Studies in Logic and Foundations of Math., Vol. 69 (pp. 47–64). Amsterdam: North-Holland.Google Scholar
  65. Tall D. (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. The Mathematical Gazette 64: 22–49CrossRefGoogle Scholar
  66. Tall D. (2008) The transition to formal thinking in mathematics. Mathematics Education Research Journal 20(2): 5–24CrossRefGoogle Scholar
  67. Tarski A. (1930) Une contribution à la théorie de la mesure. Fundamenta Mathematicae 15: 42–50Google Scholar
  68. van der Waerden B. L. (1985) A history of algebra. From al-Khwarizmi to Emmy Noether. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations