Foundations of Science

, Volume 15, Issue 4, pp 375–393 | Cite as

Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

  • Clément VidalEmail author


In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Lévy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of “Cosmological Natural Selection” with a biological analogy in mind. We examine an extension of this analogy involving intelligent life. We discuss if and how this extension could be legitimated.


Origin of the universe Fine-tuning Physical constants Initial conditions Computational universe Biological universe Role of intelligent life Cosmological natural selection Cosmological artificial selection Artificial cosmogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, F. C., & Laughlin, G. (1997). A dying universe: The long-term fate and evolution of astrophysical objects. Reviews of Modern Physics, 69(2), 337–372.
  2. Aguirre, A. (2001). Cold big-bang cosmology as a counterexample to Several anthropic arguments. Physical Review D, 64(8), 83508.
  3. Baláz, B. A. (2005). The cosmological replication cycle, the extraterrestrial paradigm and the final anthropic principle. Diotima, no. 33: 44–53.
  4. Barrow J. D. (2001) Cosmology, life, and the anthropic principle. Annals of the New York Academy of Sciences 950(1): 139CrossRefGoogle Scholar
  5. Barrow J. D., Morris S. C., Freeland S., Harper C. (2008) Fitness of the cosmos for life: Biochemistry and fine-tuning. Cambridge University Press, Cambridge, MAGoogle Scholar
  6. Barrow J. D., Tipler F. J. (1986) The anthropic cosmological principle. Oxford University Press, New YorkGoogle Scholar
  7. Bostrom N. (2002) Anthropic bias: Observation selection effects in science and philosophy. Routledge, New YorkGoogle Scholar
  8. Bostrom, N. (2003). Are you living in a computer simulation? Philosophical Quarterly, 53(211), 243–255. Scholar
  9. Carr, B. (eds) (2007a) Universe or multiverse. Cambridge University Press, CambridgeGoogle Scholar
  10. Carr B. (2007b) The Anthropic Principle Revisited. In: Carr B. (eds) Universe or multiverse?. Cambridge University Press, Cambridge, pp 77–89Google Scholar
  11. Carroll S. B. (2005) Endless forms most beautiful: The new science of Evo Devo and the making of the animal kingdom. WW Norton & Company, New YorkGoogle Scholar
  12. Chaisson E. J. (2001) Cosmic evolution: The rise of complexity in nature. Harvard University Press, Cambridge, MAGoogle Scholar
  13. Chaisson E. J. (2006) Epic of evolution: Seven ages of the cosmos. Columbia University Press, New YorkGoogle Scholar
  14. Chaitin G. J. (1974) Information-theoretic limitations of formal systems. Journal of the ACM (JACM) 21(3): 403–424CrossRefGoogle Scholar
  15. Chaitin G. J. (1987) Algorithmic information theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Chaitin G.J. (2006) Meta math!. Atlantic Books, LondonGoogle Scholar
  17. Cirkovic, M. (2003). Resource letter: PEs-1: Physical eschatology. American Journal of Physics 71, 122.
  18. Crane, L. (2010). Possible implications of the quantum theory of gravity: An introduction to the meduso-anthropic principle. Foundations of Science. doi: 10.1007/s10699-010-9182-y.
  19. Davies P. C. W. (1982) The accidental universe. Cambridge University Press, CambridgeGoogle Scholar
  20. Davies P. C. W. (1989) The cosmic blueprint. Touchstone Books, New YorkGoogle Scholar
  21. Davies P. C. W. (1998) Our place in the universe. In: Leslie J. (eds) Modern cosmology & philosophy. Prometheus Books, Amherst, pp 311–318Google Scholar
  22. Davies P. C. W. (2008) The goldilocks engima: Why is the universe just right for life?. Mariner Books, BostonGoogle Scholar
  23. De Duve C. (1995) Vital dust: Life as a cosmic imperative. Basic Books, New YorkGoogle Scholar
  24. Duff, M. J. (2002). Comment on time-variation of fundamental constants. Arxiv preprint.
  25. Duff, M. J., Okun, L. B., & Veneziano, G. (2002). Trialogue on the number of fundamental constants. Journal of High Energy Physics, 2002(3), 19.
  26. Ellis G. F. R. (1993) Before the beginning: Cosmology explained. Marion Boyars Publishers, LondonGoogle Scholar
  27. Ellis G. F. R. (2007) Multiverses: Description, uniqueness and testing. In: Carr B. (eds) Universe or Multiverse?. Cambridge University Press, Cambridge, pp 387–410Google Scholar
  28. Ellis, G. F. R. (2007). Issues in the philosophy of cosmology. In J. Butterfield & J. Earman (Eds.) Handbook in philosophy of physics (pp. 1183–1285). Elsevier.
  29. Fry I. (1995) Are the different hypotheses on the emergence of life as different as they seem?. Biology and Philosophy 10(4): 389–417CrossRefGoogle Scholar
  30. Gardner J. N. (2000) The selfish biocosm: Complexity as cosmology. Complexity 5(3): 34–45CrossRefGoogle Scholar
  31. Gardner J. N. (2003) Biocosm. The new scientific theory of evolution: Intelligent life is the architect of the universe. Inner Ocean Publishing, MakawaoGoogle Scholar
  32. Gentner, D., & Jeziorski, M. (1993). The shift from metaphor to analogy in Western science. Metaphor and Thought, 447.
  33. Gribbin J., Rees M. J. (1991) Cosmic coincidences, dark matter, mankind, and anthropic cosmology. Black Swan, LondonGoogle Scholar
  34. Harrison, E.R. (1995). The natural selection of universes containing intelligent life. Quarterly Journal of the Royal Astronomical Society, 36(3), 193–203.
  35. Hesse M. (1966) Models and analogies in science. Notre Dame University Press, Notre Dame, INGoogle Scholar
  36. Hofstadter D. R. (1995) Fluid concepts & creative analogies. Basic Books, New YorkGoogle Scholar
  37. Hogan, C. J. (2000). Why the universe is just so. Reviews of Modern Physics, 72(4), 1149–1161.
  38. Holyoak K. J., Thagard P. (1995) Mental leaps: Analogy in creative thought. MIT Press, Cambridge, MAGoogle Scholar
  39. Jenkins, A., & Perez, G. (2010, January). Looking for Life in the Multiverse: Universes with different physical laws might still be habitable. Scientific American.Google Scholar
  40. Laszlo E. (1972) Introduction to systems philosophy: Toward a new paradigm of contemporary thought. Gordon & Breach Science Pub, New YorkGoogle Scholar
  41. Leary D. E. (1990) Metaphors in the history of psychology. Cambridge University Press, CambridgeGoogle Scholar
  42. Leibniz, G. W. (1714). Principles of nature and of grace founded on reason (Trans. M. Morris, & E. P. Dutton, 1934).Google Scholar
  43. Leslie, J. (1989). Universes. Routledge.Google Scholar
  44. Leslie, J. (eds) (1998) Modern cosmology & philosophy. Prometheus Books, Amherst, NYGoogle Scholar
  45. Lévy-Leblond, J. M. (1979). The importance of being (a) constant. In G. Torraldi (Ed.), Problems in the foundations of physics, Enrico Fermi School LXXII (p. 237), North Holland.Google Scholar
  46. Lloyd S. (2005) Programming the universe: A quantum computer scientist takes on the cosmos. Vintage Books, New YorkGoogle Scholar
  47. Martin, M. (2006). The mocking memes: A basis for automated intelligence. AuthorHouse. Published under pseudonym Evan Louis Sheehan,
  48. Minsky M. (1986) The society of mind. Simon & Schuster Inc., New York, NYGoogle Scholar
  49. Neumann, J. (1951). The general and logical theory of automata. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior: The Hixon symposium.
  50. Nottale, L. (2003). Scale-Relativistic Cosmology. Chaos, Solitons and Fractals 16, no. 4: 539-564.
  51. Nottale, L. (2010). Scale relativity and fractal space-time: Theory and applications. Foundations of Science, 15(2), 101–152. doi: 10.1007/s10699-010-9170-2.
  52. Paley, W. (1802). Natural theology. Oxford University Press, 2006, USA.
  53. Rees M. (2000) Just six numbers: The deep forces that shape the universe. Basic Books, New YorkGoogle Scholar
  54. Rescher N. (2000) The price of an ultimate theory. Philosophia Naturalis 37(1): 1–20Google Scholar
  55. Rozental I. L. (1980) Physical laws and the numerical values of fundamental constants. Soviet Physics Uspekhi 23(6): 296–305CrossRefGoogle Scholar
  56. Smart, J. (2008). Evo devo universe? A framework for speculations on cosmic culture. In S. J. Dick & M. L. Lupisella (Eds.), Cosmos and culture: Cultural evolution in a cosmic context (pp. 201–295).
  57. Smolin L. (1992) Did the universe evolve?. Classical and Quantum Gravity 9(1): 173–191CrossRefGoogle Scholar
  58. Smolin L. (1997) The life of the cosmos. Oxford University Press, USAGoogle Scholar
  59. Smolin, L. (2007). Scientific alternatives to the anthropic principle. In B. Carr (Ed.), Universe of multiverse? (pp. 323–366). Cambridge University Press.
  60. Stenger V. J. (1995) The unconscious quantum metaphysics in modern physics and cosmology. Prometheus Books, Amherst, NYGoogle Scholar
  61. Stenger V. J. (2000) Natural Explanations for the Anthropic Coincidences. Philo 3(2): 50–67Google Scholar
  62. Stewart, J. (2010). The meaning of life in a developing universe. Foundations of Science, doi: 10.1007/s10699-010-9184-9.
  63. Susskind L. (2006) The cosmic landscape: String theory and the illusion of intelligent design. Back Bay Books, New YorkGoogle Scholar
  64. Tegmark M., Aguirre A., Rees M. J., Wilczek F. (2006) Dimensionless constants, cosmology, and other dark matters. Physical Review D 73(2): 23505CrossRefGoogle Scholar
  65. Vaas, R. (1998). Is there a Darwinian evolution of the cosmos?—some comments on Lee Smolin’s theory of the origin of universes by means of natural selection. MicroCosmos–MacroCosmos conference in Aachen, Germany, September 2–5 1998; finished in late 1998 and published in the conference proceedings.
  66. Vidal, C. (2007). An enduring philosophical agenda. Worldview Construction as a Philosophical Method. Submitted for publication.
  67. Vidal, C. (2008). The future of scientific simulations: From artificial life to artificial cosmogenesis. In C. Tandy (Ed.), Death and anti-death (Vol. 6): Thirty years after Kurt Gödel (1906–1978) (Vol. 6, pp. 285–318). Ria University Press.
  68. Vidal, C. (2009). Metaphilosophical criteria for worldview comparison. Working Paper.
  69. Wikipedia Contributors. (2008). Kolmogorov complexity. In Wikipedia, the free encyclopedia. Wikimedia Foundation, August 11.
  70. Wilczek, F. (1999). Quantum field theory. Reviews of Modern Physics, 71(2), 85–95.
  71. Wolfram S. (2002) A new kind of science. Wolfram Media Inc. Champaign, ILGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center Leo Apostel, Evolution Complexity and Cognition Research GroupVrije Universiteit Brussel (Free University of Brussels)BrusselsBelgium

Personalised recommendations