Advertisement

Foundations of Science

, Volume 15, Issue 3, pp 245–262 | Cite as

Towards a Hierarchical Definition of Life, the Organism, and Death

  • Gerard A. J. M. Jagers op Akkerhuis
Article

Abstract

Despite hundreds of definitions, no consensus exists on a definition of life or on the closely related and problematic definitions of the organism and death. These problems retard practical and theoretical development in, for example, exobiology, artificial life, biology and evolution. This paper suggests improving this situation by basing definitions on a theory of a generalized particle hierarchy. This theory uses the common denominator of the “operator” for a unified ranking of both particles and organisms, from elementary particles to animals with brains. Accordingly, this ranking is called “the operator hierarchy”. This hierarchy allows life to be defined as: matter with the configuration of an operator, and that possesses a complexity equal to, or even higher than the cellular operator. Living is then synonymous with the dynamics of such operators and the word organism refers to a select group of operators that fit the definition of life. The minimum condition defining an organism is its existence as an operator, construction thus being more essential than metabolism, growth or reproduction. In the operator hierarchy, every organism is associated with a specific closure, for example, the nucleus in eukaryotes. This allows death to be defined as: the state in which an organism has lost its closure following irreversible deterioration of its organization. The generality of the operator hierarchy also offers a context to discuss “life as we do not know it”. The paper ends with testing the definition’s practical value with a range of examples.

Keywords

Artificial life Biology Evolution Exobiology Natural sciences Particle hierarchy Philosophy Big History Astrobiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen J. F. (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondria genomes. Journal of Theoretical Biology 165: 609–631CrossRefGoogle Scholar
  2. Becquerel, P. (1950). La suspension de la vie des spores des bactéries et des moisissures desséchées dans le vide, vers le zéro absolu. Ses conséquences pour la dissémination et la conservation de la vie dans l”univers. Les Comptes rendus de l”Académie des sciences, Paris 231, 1274; 1392–1394.Google Scholar
  3. Becquerel P. (1951) La suspension de la vie des algues, lichens, mousses, aux zéro absolu et role de la synérèse réversible pour l”existence de la flore polaire et des hautes altitudes. Les Comptes rendus de l”Académie des sciences, Paris 232: 22–25Google Scholar
  4. Bedau, M. A. (2007). What is life. In S. Sarkar & A. Plutynski (Eds.), A companion to the philosophy of biology (pp. 455–603).Google Scholar
  5. Berg O. G., Kurland C. G. (2000) Why mitochondrial genes are most often found in nuclei. Molecular Biology and Evolution 17: 951–961Google Scholar
  6. Bonner J. T. (1998) The Origins of Multicellularity. J.T. Bonner. Integrative Biology 1: 27–36CrossRefGoogle Scholar
  7. Bro P. (1997) Chemical reaction automata. Precursors of artificial organisms. Complexity 2: 38–44CrossRefGoogle Scholar
  8. Broca (1860–1861). Rapport sur la question soumise à la Société de Biologie au sujet de la reviviscence des animaux desséchés. Mém. Soc. Biol., 3me Série, II, 1860, 1–139.Google Scholar
  9. Bullock, S., Noble, J., Watson, R., & Bedau, M. A. (Eds.) (2008). Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems. Cambridge, MA: MIT Press.Google Scholar
  10. Capps G. J., Samuels D. C., Chinnery P. F. (2003) A model of the nuclear control of mitochondrial DNA replication. Journal of Theoretical Biology 221: 565–583CrossRefGoogle Scholar
  11. Chandler, J. L. R., & Van de Vijver, G. (Eds.) (2000). Closure: Emergent organizations and their dynamics. Annals of the New York academy of Sciences 901.Google Scholar
  12. Checkland P., Scholes J. (1990) Soft systems methodology in action. Wiley, Chichester, p 329Google Scholar
  13. Clark C. G., Roger A. J. (1995) Direct evidence for secondary loss of mitochondria in Entamoeba hitolytica. Proceedings of the National Academy of Sciences of the USA 92: 6518–6521CrossRefGoogle Scholar
  14. Cleland C. E., Chyba C. F. (2002) Defining “life”. Origins of life and evolution of the Biosphere 32: 387–393CrossRefGoogle Scholar
  15. Cleland, C. E., & Chyba, C. F. (2007). Does “life” have a definition?. In T. Woodruff, I. I. I. Sullivan, & J. A. Baross, Planets and Life: The Emerging Science of Astrobiology. : Cambridge University Press.Google Scholar
  16. Dawkins R. (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  17. Eigen M. (1971) Molekulare Selbstorganisation und Evolution (Self organization of matter and the evolution of biological macro molecules). Naturwissenschaften 58: 465–523CrossRefGoogle Scholar
  18. Eigen M., Schuster P. (1979) The hypercycle: A principle of self-organization. Springer, New YorkGoogle Scholar
  19. Emmeche C. (1997) Autopoietic systems, replicators, and the search for a meaningful biological definition of life. Ultimate Reality and Meaning 20: 244–264Google Scholar
  20. Etxeberria A. (2004) Autopoiesis and natural drift: Genetic information, reproduction, and evolution revisited. Artificial Life 10: 347–360CrossRefGoogle Scholar
  21. Gánti T. (1971) The principle of life (in Hungarian). Gondolat, BudapestGoogle Scholar
  22. Grosberg R. K., Strathmann R. R. (2007) The evolution of multicellularity: A minor major transition?. Annual Review of Ecology, Evolution, and Systematics 38: 621–654CrossRefGoogle Scholar
  23. Happel, B. L. M. (1997). Principles of neural organization: Modular neuro-dynamics. PhD thesis, 125 pp.Google Scholar
  24. Hazen R. M. (2001) Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proceedings of the National Academy of Sciences 98: 5487–5490CrossRefGoogle Scholar
  25. Hengeveld R., Fedonkin M. A. (2007) Bootstapping the energy flow in the beginning of life. Acta Biotheoretica 55: 181–226CrossRefGoogle Scholar
  26. Heylighen F. (1990) Relational Closure: A mathematical concept for distinction-making and complexity analysis. In: Trappl R. (eds) Cybernetics and Systems “90. World Science, Singapore, pp 335–342Google Scholar
  27. Heylighen F. (1991) Modeling Emergence. World Futures: The Journal of General Evolution 31: 89–104Google Scholar
  28. Hull D. L. (1981) Units of evolution: A metaphysical essay. In: Jensen U. J., Harré R. (eds) The philosophy of evolution. St. Martins Press, New York, pp 23–44Google Scholar
  29. Jagersop Akkerhuis G. A. J. M. (2001) Extrapolating a hierarchy of building block systems towards future neural network organisms. Acta Biotheoretica 49: 171–189CrossRefGoogle Scholar
  30. Jagersop Akkerhuis G. A. J. M. (2008) Analyzing hierarchy in the organization of biological and physical systems. Biological Reviews 83: 1–12CrossRefGoogle Scholar
  31. Jagersop Akkerhuis G. A. J. M., van Straalen N. M. (1999) Operators, the Lego–bricks of nature: Evolutionary transitions from fermions to neural networks. World Futures, the Journal of General Evolution 53: 329–345Google Scholar
  32. Jeuken M. (1975) The biological and philosophical definitions of life. Acta Biotheoretica 24: 14–21CrossRefGoogle Scholar
  33. Kaiser D. (2001) Building a multicellular organism. Annual Review Genetics 35: 103–123CrossRefGoogle Scholar
  34. Kauffman S. A. (1986) Autocatalytic sets of proteins. Journal of Theoretical Biology 119: 1–24CrossRefGoogle Scholar
  35. Kauffman S. A. (1993) The origins of order. Self-organization and selection in evolution. Oxford University Press, OxfordGoogle Scholar
  36. Keilin D. (1959) The Leeuwenhoek lecture: The problem of anabiosis or latent life: History and current concept. Proceedings of the Royal Society of London, Series B, Biological Sciences 150: 149–191CrossRefGoogle Scholar
  37. Korzeniewski B. (2005) Confrontation of the cybernetic definition of a living individual with the real world. Acta Biotheoretica 53: 1–28CrossRefGoogle Scholar
  38. Koshland D. E. Jr. (2002) The seven pillars of life. Science 295: 2215–2216CrossRefGoogle Scholar
  39. Kunin V. (2000) A system of two polymerases. A model for the origin of life. Origins of Life and Evolution of the Biosphere 30: 459–466CrossRefGoogle Scholar
  40. Kurzweil R. (1999) The age of spiritual machines. When computers exceed human intelligence. Viking, New YorkGoogle Scholar
  41. Lane N. (2005) Power, sex, suicide. Mitochondria and the meaning of life. Oxford University Press, Oxford, p 354Google Scholar
  42. Mackie G. O., Anderson P. A. V., Singla C. L. (1984) Apparent absence of gap junctions in two classes of Cnidaria. The Biological Bulletin 167: 120–123CrossRefGoogle Scholar
  43. Martin W., Russel M. J. (2002) On the origins of cells: A hypothesis for the evolutionary transitions from abiotic chemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleate cells. Philosophical Transactions of the Royal Society of London, series B-Biological Sciences 358: 59–83CrossRefGoogle Scholar
  44. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and Cognition. The Realization of the Living. Dordrecht: D. Reidel (also in Boston Studies in the Philosophy of Science, 42).Google Scholar
  45. Maynard Smith, J., & Szathmáry, E. (1995). The Major Transitions in Evolution. Oxford: Freeman & Co (now Oxford University Press).Google Scholar
  46. Maynard Smith J., Szathmáry E. (1999) The origins of life. Oxford University Press, OxfordGoogle Scholar
  47. Morales, J. (1998). The definition of life. Psychozoan, 1(a strictly electronic journal), 1–39.Google Scholar
  48. Munson, J. R., & York, R. C. (2003). Philosophy of biology. Encyclopedia Britannica. Britannica 2003 ultimate reference suite. (http://www.compilerpress.atfreeweb.com/Anno%20Munson%20EB%20Philosophy%20of%20biology.htm).
  49. Murre J. M. J., Phaf R. H., Wolters G. (1992) CALM: Categorizing and learning module. Neural Networks 5: 55–82CrossRefGoogle Scholar
  50. Nicholson B. J. (2003) Gap junctions—from cell to molecule. Journal of Cell Science 116: 4479–4481CrossRefGoogle Scholar
  51. Oliver J. D., Perry R. S. (2006) Definitely life but not definitely. Origins of Life and Evolution of the Biosphere 36: 515–521Google Scholar
  52. Pagels H. R. (1985) Perfect symmetry: The search for the beginning of time. Simon and Schuster, New YorkGoogle Scholar
  53. Panchin Y. V. (2005) Evolution of gap junction proteins—the pannexin alternative. Journal of Experimental Biology 208: 1415–1419CrossRefGoogle Scholar
  54. Peracchia, C., Benos, D.J. (eds) (2000) Gap Junctions: Molecular Basis of Cell Communication in Health and Disease (Current Topics in Membranes, Volume 49). Academic press, New YorkGoogle Scholar
  55. Poundstone W. (1984) The Recursive Universe: Cosmic Complexity and the Limits of Scientific Knowledge. William Morrow, New YorkGoogle Scholar
  56. Popa R. (2003) Between necessity and probability. Searching for the definition and the origin of life. Advances in Astrobiology and Biogeophysics. Springer, BerlinGoogle Scholar
  57. Ray T. S. (1991) Evolution and optimization of digital organisms. In: Billingsley K. R., Derohanes E., Brown H. (eds) Scientific excellence in supercomputing: The IBM 1990 contest Prize Papers. The Baldwin Press, The University of Georgia, Athens, GA, pp 489–531Google Scholar
  58. Rivera M., Jain R., Moore J. E., Lake J. A. (1998) Genomic evidence for two functionally distinct gene classes. Proceedings of the National Academy of Sciences of the USA 95: 6239–6244CrossRefGoogle Scholar
  59. Rosen R. (1958) A relational theory of biological systems. Bulletin of Mathematical Biophysics 20: 245–260CrossRefGoogle Scholar
  60. Rosen R. (1973) On the dynamical realization of (M,R)-systems. Bulletin of Mathematical Biophysics 35: 1–9Google Scholar
  61. Rosen R. (1991) Life itself. A comprehensive inquiry into the nature, origin and fabrication of life. Columbia University Press, New YorkGoogle Scholar
  62. Ruiz-Mirazo K., Pereto J., Moreno A. (2004) A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere 34: 323–345CrossRefGoogle Scholar
  63. Searcy D. G. (2003) Metabolic integration during the evolutionary origin of mitochondria. Cell Research 13: 229–238CrossRefGoogle Scholar
  64. Sims K. (1994) Evolving 3D Morphology and Behavior by Competition. In: Brooks M. (eds) Artificial Life IV Proceedings. MIT Press, Cambridge, MA, pp 28–39Google Scholar
  65. Teilhard de Chardin, P. (1966). Man’s place in nature. The human zoology group. Editions du Seuil VIII, Paris, 1949.Google Scholar
  66. Teilhard de Chardin, P. (1969). The future of man. Editions du Seuil V, Paris, 1946.Google Scholar
  67. Tinbergen, N. (1946). Inleiding tot de diersociologie (Introduction to animal sociology). J. Noorduijn en Zoon, Gorinchem.Google Scholar
  68. Townsend C. R., Begon M., Harper J. L. (2008) Essentials of ecology (3rd ed.). Blackwell publishing, OxfordGoogle Scholar
  69. Turchin, V. (1995). A dialogue on metasystem transitions. In F. Heylighen, C. Joslyn, & V. Turchin (Eds.), 1995, The Quantum of Evolution. Toward a theory of metasystem transitions. (Gordon and Breach Science Publishers, New York) (special issue of “World Futures: The journal of general evolution, Vol. 45).Google Scholar
  70. Turchin V. (1977) The phenomenon of science. Columbia University Press, New YorkGoogle Scholar
  71. van der Steen W. J. (1997) Limitations of general concepts: A comment on Emmeche’s definition of “life”. Ultimate Reality and Meaning 20: 317–320Google Scholar
  72. Varela F. J. (1979) Principles of biological autonomy. North Holland, New YorkGoogle Scholar
  73. von Bertalanffy L. (1968) General systems theory, foundations, development, applications. Penguin Books Ltd. Harmondsworth, Middlesex, EnglandGoogle Scholar
  74. von Neumann J., & Burks, A. W. (1966). Theory of self-reproducing automata.Google Scholar
  75. Willensdorfer, M. (2008). On the evolution of differentiated multicellularity. arXiv 0801.2610v1Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Alterra, Centre for Ecosystem Studies, Wageningen, URWageningenThe Netherlands

Personalised recommendations