Foundations of Science

, Volume 14, Issue 4, pp 361–411 | Cite as

Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

  • Diederik Aerts


We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses,  in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of ‘the one and the many’ in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrödinger’s Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.


Quantum physics Meaning Coherence Conceptual Explanatory framework 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achinstein P. (1991) Particles and waves: Historical essays in the philosophy of science. Oxford University Press, Oxford UKGoogle Scholar
  2. Aerts D. (1982) Example of a macroscopical situation that violates Bell inequalities. Lettere al Nuovo Cimento 34: 107–111CrossRefGoogle Scholar
  3. Aerts D. (1985a) The physical origin of the EPR paradox and how to violate Bell inequalities by macroscopical systems. In: Lathi P., Mittelstaedt P. (eds) Symposium on the foundations of modern physics: 50 years of the Einstein-Podolsky-Rosen Gedankenexperiment. World Scientific, Singapore, pp 305–320Google Scholar
  4. Aerts D. (1985b) A possible explanation for the probabilities of quantum mechanics and a macroscopical situation that violates Bell inequalities. In: Mittelstaedt P., Stachow E.W. (eds) Recent developments in quantum logic, Grundlagen der Exacten Naturwissenschaften, vol. 6, Wissenschaftverlag. Mannheim, Bibliographisches Institut, pp 235–251Google Scholar
  5. Aerts D. (1986) A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics 27: 202–210CrossRefGoogle Scholar
  6. Aerts D. (1991) A mechanistic classical laboratory situation violating the Bell inequalities with \({2\sqrt{2}}\) , exactly ‘in the same way’ as its violations by the EPR experiments. Helvetica Physica Acta 64: 1–23Google Scholar
  7. Aerts D. (1992) The construction of reality and its influence on the understanding of quantum structures. International Journal of Theoretical Physics 31: 1815–1837CrossRefGoogle Scholar
  8. Aerts D. (1994) Quantum structures, separated physical entities and probability. Foundations of Physics 24: 1227–1259CrossRefGoogle Scholar
  9. Aerts D. (1995) Quantum structures: An attempt to explain their appearance in nature. International Journal of Theoretical Physics 34: 1165–1186CrossRefGoogle Scholar
  10. Aerts D. (1998) entity and modern physics: The creation-discovery view of reality. In: Castellani E. (eds) Interpreting bodies: Classical and quantum objects in modern physics. Princeton University Press, Princeton, pp 223–257Google Scholar
  11. Aerts D. (1998b) The hidden measurement formalism: What can be explained and where paradoxes remain. International Journal of Theoretical Physics 37: 291–304CrossRefGoogle Scholar
  12. Aerts D. (1999) The stuff the world is made of: Physics and reality. In: Aerts D., Broekaert J., Mathijs E. (eds) Einstein meets Magritte: An interdisciplinary reflection. Kluwer Academic, Dordrecht, pp 129–183Google Scholar
  13. Aerts D. (2005) Towards a new democracy: Consensus through quantum parliament. In: Aerts D., ’Hooghe B.D, Note N. (eds) Worldviews science and us Redemarcating knowledge and its social and ethical implications. World Scientific, Singapore, pp 189–202CrossRefGoogle Scholar
  14. Aerts, D. (2007a). Quantum interference and superposition in cognition: Development of a theory for the disjunction of concepts. Archive reference and link:
  15. Aerts, D. (2007b). General quantum modeling of combining concepts: A quantum field model in Fock space. Archive reference and link:
  16. Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53. doi: 10.1016/
  17. Aerts, D. (2010a). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics (accepted).Google Scholar
  18. Aerts, D. (2010b). Quantum interference in cognition and double-slit graphical representations. In preparation.Google Scholar
  19. Aerts D., Aerts S. (1994) Applications of quantum statistics in psychological studies of decision processes. Foundations of Science 1: 85–97Google Scholar
  20. Aerts D., Aerts S., Broekaert J., Gabora L. (2000) The violation of Bell inequalities in the macroworld. Foundations of Physics 30: 1387–1414CrossRefGoogle Scholar
  21. Aerts D., Aerts S., Gabora L. (2009) Experimental evidence for quantum structure in cognition. In: Bruza P., Sofge D., Lawless W., Rijsbergen K., Klusch M. (eds) Proceedings of the third quantum interaction symposium, lecture notes in artificial intelligence Vol 5494. Springer, Berlin, pp 59–70Google Scholar
  22. Aerts D., Czachor M. (2004) Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A-Mathematical and General 37: L123–L32CrossRefGoogle Scholar
  23. Aerts D., Czachor M., D’Hooghe B. (2006) Towards a quantum evolutionary scheme: violating Bell’s inequalities in language. In: Gontier N., Van Bendegem J.P., Aerts D. (eds) Evolutionary epistemology, language and culture—A non adaptationist systems theoretical approach. [Theory and decision library series A: Philosophy and methodology of the social sciences. Series editor: Julian Nida-Ruemelin]. Springer, DordrechtGoogle Scholar
  24. Aerts D., D’Hondt E., D’Hooghe B. (2005) A geometrical representation of entanglement as internal constraint. International Journal of Theoretical Physics 44: 897–907CrossRefGoogle Scholar
  25. Aerts D., D’Hooghe B. (2009) Classical logical versus quantum conceptual thought: Examples in economy, decision theory and concept theory. In: Bruza P., Sofge D., Lawless W., Rijsbergen K., Klusch M. (eds) Proceedings of the third quantum interaction symposium, lecture notes in artificial intelligence Vol 5494. Springer, Berlin, pp 128–142Google Scholar
  26. Aerts D., Gabora L. (2005a) A theory of concepts and their combinations I: The structure of the sets of contexts and properties. Kybernetes 34: 167–191CrossRefGoogle Scholar
  27. Aerts D., Gabora L. (2005b) A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes 34: 192–221CrossRefGoogle Scholar
  28. Albrecht A. (1994) Some remarks on quantum coherence. Journal of Modern Optics 41: 2467–2482CrossRefGoogle Scholar
  29. Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E., Cornell E. A. (1995) Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269: 198–201CrossRefGoogle Scholar
  30. Arafat, S., & van Rijsbergen, C. J. (2007). Quantum theory and the nature of search. Proceedings of the AAAI quantum interaction symposium (pp. 114–122).Google Scholar
  31. Aspect A., Grangier P., Roger G. (1981) Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters 47: 460–463CrossRefGoogle Scholar
  32. Baez J., Ody M., Richter B. (1995) Topological aspects of spin and statistics of solitons in nonlinear sigma-models. Journal of Mathematical Physics 36: 108–131Google Scholar
  33. Bell J. S. (1964) On the Einstein-Podolsky-Rosen paradox. Physics 1: 195–200Google Scholar
  34. Blei D. M., Ng A. N., Michael I. J. (2003) Latent Dirichlet allocation. Journal of Machine Learning Research 3: 993–1022CrossRefGoogle Scholar
  35. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of hidden variables I&II. Physical Review, 85, 166–179, 180–193Google Scholar
  36. Bohr N. (1928) The quantum postulate and the recent development of atomic theory. Nature 121: 580–590CrossRefGoogle Scholar
  37. Bogoliubov N., Logunov A. A., Oksak A. I., Todorov I. T. (1990) General principles of quantum field theory. Kluwer Academic Publishers, DordrechtGoogle Scholar
  38. Bromley D. A., Kuehner J. A., Almqvist E. (1961) Elastic scattering of identical spin-zero nuclei. Physical Review 123: 878–893CrossRefGoogle Scholar
  39. Busemeyer J.R., Matthew M., Wang Z. (2006) A quantum information processing theory explanation of disjunction effects. In: Sun R., Miyake N. (eds) Proceedings of 28th annual conference of the cognitive science society & the 5th international conference of cognitive science. Mahwah, NJ, pp 131–135Google Scholar
  40. Busemeyer J. R., Wang Z., Townsend J. T. (2006b) Quantum dynamics of human decision making. Journal of Mathematical Psychology 50: 220–241CrossRefGoogle Scholar
  41. Camino F. E., Zhou Wei, Goldman V. J. (2005) Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Physical Review B 72: 075342CrossRefGoogle Scholar
  42. Castellani E. (1998) Interpreting bodies: Classical and quantum objects in modern physics. Princeton. Princeton University PressGoogle Scholar
  43. Chandler D. (2002) Semiotics: The basics. Londen, RoutledgeGoogle Scholar
  44. Clauser J. F., Horne M. A., Shimony A., Holt R. A. (1969) Proposed experiment to test local hidden-variable theories. Physical Review Letters 23: 880–884CrossRefGoogle Scholar
  45. Davis K. B., Mewes M. O., Andrews M. R., van Druten N. J., Durfee D. S., Kurn D. M., Ketterle W. (1995) Bose-Einstein condensation in a gas of sodium atoms. Physical Review Letters 75: 3969–3973CrossRefGoogle Scholar
  46. de Broglie L. (1923) Ondes et quanta. Comptes Rendus 177: 507–510Google Scholar
  47. de Broglie, L. (1928). La nouvelle dynamique des quanta. In Proceedings of the solvay conference 1928. Electrons et Photons (pp. 105–132)Google Scholar
  48. de Kunder, M. (2009). The size of the World Wide Web. Available at: Accessed 15 Sep. 2009.
  49. Deerwester S., Dumais S. T., Furnas G. W., Landauer T. K., Harshman R. (1990) Indexing by latent semantic analysis. Journal of the American Society for Information Science 41: 391–407CrossRefGoogle Scholar
  50. Dieks D., Versteegh M. A. M. (2008) Identical quantum particles and weak discernibility. Foundations of Physics 38: 923–934CrossRefGoogle Scholar
  51. Duck I., Sudarshan E. C. G. (1998) Toward an understanding of the spin-statistics theorem. American Journal of Physics 66: 284–303CrossRefGoogle Scholar
  52. Dyson F. J., Lenard A. (1967) Stability of matter I. Journal of Mathematical Physics 8: 423–434CrossRefGoogle Scholar
  53. Einstein A. (1905) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17: 132–148CrossRefGoogle Scholar
  54. Einstein A., Podolsky B., Rosen N. (1935) Can quantum-mechanical description of physical reality be considered complete?. Physical Review 47: 777–780CrossRefGoogle Scholar
  55. Feynman R. P. (1961) Quantum electrodynamics. Basic Books, New YorkGoogle Scholar
  56. Feynman R. P. (1967) The character of physical law, chap. 6. MIT-Press, Cambridge, MassachusettsGoogle Scholar
  57. Feynman R. P., Leighton R. B., Sands M. (1963) The Feynman lecture on physics, vol. 3: Quantum mechanics. Addison-Wesley, New YorkGoogle Scholar
  58. Feynman R. P., Weinberg S. (1987) Elementary particles and the laws of physics: The 1986 Dirac memorial lectures. Cambridge University Press, CambridgeGoogle Scholar
  59. Fierz M. (1939) . Helvetica Physica Acta 12: 3–37CrossRefGoogle Scholar
  60. French S., Krause D. (2006) Identity in physics: A historical, philosophical and formal analysis. Oxford University Press, OxfordGoogle Scholar
  61. Franco, R. (2009). The conjunction fallacy and interference effects. Journal of Mathematical Psychology, 53. doi: 10.1016/
  62. Fresnel, A. J. (1819). Mémoire sur la diffraction de la lumière. Annales de Chimie et de Physique XI, 246–296, 337–378.Google Scholar
  63. Gabora L., Aerts D. (2002) Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence 14: 327–358CrossRefGoogle Scholar
  64. Griffiths T. L., Steyvers M. (2002). Prediction and semantic association. In Advances in neural information processing systems (Vol. 15, pp. 11–18). Massachusetts: MIT Press.Google Scholar
  65. Hampton J. A. (1988) Disjunction of natural concepts. Memory & Cognition 16: 579–591Google Scholar
  66. Heisenberg W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift Für Physik 33: 879–893CrossRefGoogle Scholar
  67. Heisenberg W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift Für Physik 43: 172–198CrossRefGoogle Scholar
  68. Hofmann T. (1999). Probabilistic latent semantic analysis. Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (pp. 50–57). Berkeley, CaliforniaGoogle Scholar
  69. Huygens, C. (1678). Traité de la Lumiere. Reprinted in part In H. Crew (Ed.) (1990). The wave theory of light. New York.Google Scholar
  70. Khrennikov, A. Y., & Haven, E. (2009). Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts. Journal of Mathematical Psychology, 53. doi: 10.1016/
  71. Kim Y.-H., Yu R., Kulik S. P., Shih Y. H., Scully M. O. (2000) Delayed choice quantum eraser. Physical Review Letters 84: 1–5CrossRefGoogle Scholar
  72. Landauer T. K., Dumais S. T. (1997) A solution of Plato’s problem: The latent semantic analysis theory of the acquisition, induction and representation of knowledge. Psychological Review 104: 211–240CrossRefGoogle Scholar
  73. Landauer T. K., Foltz P. W., Laham D. (1998) Introduction to latent semantic analysis. Discourse Processes 25: 259–284CrossRefGoogle Scholar
  74. Leinaas J. M., Myrheim J. (1977) On the theory of identical particles. Il Nuovo Cimento B 37: 1–23CrossRefGoogle Scholar
  75. Lenard A., Dyson F. J. (1968) Stability of matter. II. Journal of Mathematical Physics 9: 698–711CrossRefGoogle Scholar
  76. Lieb E. H. (1976) The stability of matter. Reviews of Modern Physics 48: 553–569CrossRefGoogle Scholar
  77. Lieb E. H. (1979) Why matter is stable. Chinese Journal of Physics 17: 49–62Google Scholar
  78. Lund K., Burgess C. (1996) Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments and Computers 28: 203–208Google Scholar
  79. Maxwell J. C. (1865) A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155: 459–512CrossRefGoogle Scholar
  80. Muthaporn C., Manoukian E. B. (2004) Instability of bosonic matter in all dimensions. Physics Letters A 321: 152–154CrossRefGoogle Scholar
  81. Newton I. (1704) Opticks or, a Treatise of the Reflections, Refractions, Inflexions and Colours of Light. Printed for William Innys at the West-End of St Paul’s, LondonGoogle Scholar
  82. O’Hara P. (2003) Rotational invariance and the spin-statistics theorem. Foundations of Physics 33: 1349–1368CrossRefGoogle Scholar
  83. Pauli W. (1940) The connection between spin and statistics. Physical Review 58: 716–722CrossRefGoogle Scholar
  84. Pauli W. (1950) On the connection between spin and statistics. Progress of Theoretical Physics 5: 526–543CrossRefGoogle Scholar
  85. Planck M. (1901) Über das Gesetz der Energieverteilung im Normalspektrum. Annalen der Physik 4: 553–563CrossRefGoogle Scholar
  86. Pothos E. M., Busemeyer J. R. (2009) A quantum probability explanation for violations of ‘rational’ decision theory. Proceedings of the Royal Society B 276: 2171–2178CrossRefGoogle Scholar
  87. Salton G., Wong A., Yang C. S. (1975) A vector space model for automatic indexing. Communications of the ACM 18: 613–620CrossRefGoogle Scholar
  88. Schrödinger E. (1926a) Quantizierung als Eigenwertproblem (Erste Mitteilung). Annalen der Physik 79: 361–376CrossRefGoogle Scholar
  89. Schrödinger E. (1926b) Über das Verhältnis der Heisenberg Born Jordanischen Quantenmechanik zu der meinen. Annalen der Physik 79: 734–756CrossRefGoogle Scholar
  90. Scully M. O., Drühl K. (1982) Quantum eraser: A proposed photon correlation experiment concerning observation and delayed choice in quantum mechanics. Physical Review A 25: 2208–2213CrossRefGoogle Scholar
  91. Streater R. F., Wightman A. S. (1989) PCT Spin and statistics and all that. Addison-Wesley, New YorkGoogle Scholar
  92. Tittel W., Brendel J., Gisin B., Herzog T., Zbinden H., Gisin N. (1998) Experimental demonstration of quantum correlations over more than 10 km. Physical Review A 57: 3229–3232CrossRefGoogle Scholar
  93. Van Fraassen B. C. (1995) Quantum mechanics an empiricist view. Oxford University Press, OxfordGoogle Scholar
  94. Van Rijsbergen K. (2004) The geometry of information retrieval. Cambridge University Press, Cambridge UKGoogle Scholar
  95. von Neumann J. (1932) Mathematical foundations of quantum mechanics. Princeton University Press, Princeton New JerseyGoogle Scholar
  96. Walborn S. P., Terra Cunha M. O., Pádua S., Monken C. H. (2002) Double-slit quantum eraser. Physical Review A 65: 033818CrossRefGoogle Scholar
  97. Weihs G., Jennewein T., Simon C., Weinfurter H., Zeilinger A. (1998) Violation of Bell’s inequality under strict Einstein locality conditions. Physical Review Letters 81: 5039–5043CrossRefGoogle Scholar
  98. Weinberg S. (1995) The quantum theory of fields. Cambridge University Press, CambridgeGoogle Scholar
  99. Widdows, D. (2003). Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In Proceedings of the 41st annual meeting of the association for computational linguistics (pp. 136–143). Sapporo, Japan, July 7–12.Google Scholar
  100. Widdows D. (2006) Geometry and meaning. CSLI Publications, StanfordGoogle Scholar
  101. Widdows D. (2008) Semantic vector products: Some initial investigations. Proceedings of the second AAAI symposium on quantum interaction. College Publications, LondonGoogle Scholar
  102. Widdows D. (2009) Semantic vector combinations and the synoptic gospels. Lecture Notes In Artificial Intelligence 5494: 251–265Google Scholar
  103. Widdows, D., & Peters, S. (2003). Word vectors and quantum logic: Experiments with negation and disjunction. In Mathematics of language (Vol. 8, pp. 141–154). Indiana: Bloomington.Google Scholar
  104. Wilczek F. (1982) Quantum mechanics of fractional spin particles. Physical Review Letters 49: 957–959CrossRefGoogle Scholar
  105. Young, T. (1802). On the theory of light and colours. Philosophical Transactions of the Royal Society, 92, 12–48. Reprinted in part in H. Crew (Ed.) (1990). The wave theory of light. New York.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Center Leo Apostel for Interdisciplinary Studies and Departments of Mathematics and PsychologyVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations