Foundations of Science

, Volume 14, Issue 4, pp 331–349 | Cite as

Digestive Enzyme Secretion, Intuition, and the History of Science: Part II

Article

Abstract

A companion paper explored the role of intuition in the genesis of an alternative theory for the secretion of pancreatic digestive enzymes, looking through the lens of three philosophers/historians of science. Gerald Holton, the last scholar, proposed that scientific imagination is shaped by a number of thematic presuppositions, which function largely below awareness. They come in pairs of opposites that alternately gain cultural preeminence. The current paper examines three thematic presuppositions inherent to both the generally accepted model for digestive enzyme secretion and most consciousness-centered views of higher-level cognition—discreteness, reduction, and simplicity. Since they often build on each other, together they are referred to as the simplicity worldview. Also considered are the three opposite thematic assumptions inherent to both the alternative model for digestive enzyme secretion and intuition-friendly views of higher-level cognition—the continuum, holism, and complexity—together referred to as the complexity worldview. The article highlights the potential importance to scientific knowledge of this currently less favored worldview.

Keywords

Digestive enzyme secretion History of science Intuition Unconscious cognition Subliminal perception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker F. (2008) New findings on unconscious versus conscious thought in decision making: Additional empirical data and meta-analysis. Judgment and Decision Making 3: 292–303Google Scholar
  2. Baars B. (1988) A cognitive theory of consciousness. Cambridge University Press, CambridgeGoogle Scholar
  3. Baars B. (1997) In the theater of consciousness: Global workspace theory, a rigorous scientific theory of consciousness. Journal of Consciousness Studies 4: 292–309Google Scholar
  4. Baars B. (1999) In the theater of consciousness: The workspace of the mind. Oxford University Press, New YorkGoogle Scholar
  5. Baars B. (2002) The conscious access hypothesis: Origins in recent evidence. Trends in Cognitive Sciences 6: 47–52CrossRefGoogle Scholar
  6. Bahrami B., Lavie N., Rees G. (2007) Attentional load modulates responses of human primary visual cortex to invisible stimuli. Current Biology 17: 509–513CrossRefGoogle Scholar
  7. Bejerano B., Pheasant M., Makunin I., Stephen S., Kent W. J., Mattick J. S., Haussler D. (2004) Ultraconserved elements in the human genome. PNAS 103: 5676–5681Google Scholar
  8. Block N. (1990) Consciousness and accessibility. Behavioral and Brain Sciences 13: 596–598Google Scholar
  9. Bolte A., Goschke T. (2005) On the speed of intuition: Intuitive judgments of semantic coherence under different response deadlines. Memory and Cognition 33: 1248–1255Google Scholar
  10. Bortorf H. (1996) The wholeness of nature: Goethe’s way towards a science of conscious participation in nature. Lindisfarne Press, Hudson, NYGoogle Scholar
  11. Bowers K. S., Regehr G., Balthazard C., Parker K. (1990) Intuition in the context of discovery. Cognitive Psychology 22: 72–110CrossRefGoogle Scholar
  12. Budinger E., Heil P., Hess A., Scheich H. (2006) Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience 143: 1065–1083CrossRefGoogle Scholar
  13. Caro L. C., Palade G. E. (1964) Protein synthesis, storage and discharge in the pancreatic acinar cell. Journal of Cell Biology 20: 473–495CrossRefGoogle Scholar
  14. Christoff K., Gordon A. M., Smallwood J., Smith R., Schooler J. W. (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. PNAS 106: 8719–8724CrossRefGoogle Scholar
  15. Cleeremans A. (2008) Consciousness: The radical plasticity thesis. Progress in Brain Science 168: 19–33CrossRefGoogle Scholar
  16. Cleeremans A., Jiménez L. (2002) Implicit learning and consciousness: A graded, dynamic perspective. In: French M., Cleeremans A. (eds) Implicit learning and consciousness: An empirical, philosophical and computational consensus in the making. Psychology Press, New York, pp 1–40Google Scholar
  17. Crawley S. F., French C. C., Yesson S. A. (2002) Evidence for transliminality from a subliminal card-guessing task. Perception 31: 887–892CrossRefGoogle Scholar
  18. Damasio A. R. (1994) Descartes’ error: Emotion, reason, and the human brain. G. P. Putnam’s Sons, New YorkGoogle Scholar
  19. Dehaene S., Naccache L., Le Clec H. G., Koechlin E., Mueller M., Dehaene-Lambertz G., van de Moortele P. F., Le Bihan D. (1998) Imaging unconscious semantic priming. Nature 395: 597–600CrossRefGoogle Scholar
  20. Dehaene S., Sergeant C., Changeux J. (2003) A neuronal network model linking subjective reports an objective physiological data during conscious perception. Proceedings of the National Academy of Sciences USA 100: 8520–8525CrossRefGoogle Scholar
  21. Dehaene S., Changeux J., Naccache L., Sackur J., Sergent C. (2006) Conscious, preconscious and subliminal processing: A testable taxonomy. Trends in Cognitive Sciences 10: 204–211CrossRefGoogle Scholar
  22. Destrebecqz A., Cleeremans A. (2003) Temporal effects in sequence learning. In: Jiménez L. (eds) Attention and implicit learning. John Benjamins, Amsterdam, pp 180–213Google Scholar
  23. Dienes Z., Perner Z. (2003) Unifying consciousness with explicit knowledge. In: Cleeremans A. (eds) The unity of consciousness: Binding integration and dissociation. Oxford University Press, Oxford, pp 214–232Google Scholar
  24. Dienes Z., Scott R. (2005) Measuring unconscious knowledge: Distinguishing structural knowledge and judgment knowledge. Psychological Research 69: 338–351CrossRefGoogle Scholar
  25. Dijksterhuis A., Bos M. W., Nordgren L. F., van Baaren R. B. (2006) On making the right choice: The deliberation-without-attention effect. Science 311: 1005–1007CrossRefGoogle Scholar
  26. Dijksterhuis A., Meurs T. (2006) Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition 15: 135–146CrossRefGoogle Scholar
  27. Driver J., Noesselt T. (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57: 11–23CrossRefGoogle Scholar
  28. Edelman G. M., Tononi G. (2000) A universe of consciousness: How matter became imagination. Basic Books, New YorkGoogle Scholar
  29. Elman J., Bates J., Johnson M., Karmiloff-Smith A., Parisi D., Plunkett K. (1996) Rethinking innateness: A connectionist perspective on development. MIT Press, Cambridge, MAGoogle Scholar
  30. Fleck J., Green D., Stevenson J., Payne L., Bowden E., Jung-Beeman M., Kunios J. (2008) The transliminal brain at rest: Baseline EEG, unusual experiences, and access to unconscious mental activity. Cortex 44: 1353–1363CrossRefGoogle Scholar
  31. Fletcher P. C., Zafiris O., Frith C. D., Honey R. A. E., Corlett P. R., Zilles K., Fink G. R. (2007) On the benefits of not trying: Brain activity and connectivity reflecting the interactions of explicit and implicit sequence learning. Cerebral Cortex 15: 1002–1015CrossRefGoogle Scholar
  32. Freeman W. J. (1991) The physiology of perception. Scientific American 264: 78–85CrossRefGoogle Scholar
  33. Freeman W. J. (1998) How brains make up their minds. Weidenfeld & Nicolson, LondonGoogle Scholar
  34. Fu Q., Fu X., Dienes Z. (2008) Implicit sequence learning and conscious awareness. Consciousness and Cognition 17: 185–202CrossRefGoogle Scholar
  35. Gaillard R., Cohen L., Adam C., Clemenceau S., Hasboun D., Baulac M., Willer J., Dehaene S., Naccache L. (2007) Subliminal words durably affect neuronal activity. NeuroReport 18: 1527–1531CrossRefGoogle Scholar
  36. Gaillard R., Del Cul A., Naccache L., Vinckier F., Cohen L., Dehaene S. (2006) Nonconscious semantic processing of emotional words modulates conscious access. Proceedings of the National Academy of Sciences, USA 103: 7524–7529CrossRefGoogle Scholar
  37. Gladwell M. (2005) Blink: The power of thinking without thinking. Little Brown, New YorkGoogle Scholar
  38. Goncz K. K., Rothman S. S. (1995) A transmembrane pore can account for protein movement across zymogen granule membrane. Biochimica Biophysica Acta 1238: 91–93CrossRefGoogle Scholar
  39. Gumbart J., Schulten K. (2006) Molecular dynamics studies of the archaeal translocon. Biophysical Journal 90: 2356–2367CrossRefGoogle Scholar
  40. Holton G. (1973) Thematic origins of scientific thought: Kepler to Einstein. Harvard University Press, Cambridge, MAGoogle Scholar
  41. Holton G. (1998) The Scientific imagination. Harvard University Press, Cambridge, MAGoogle Scholar
  42. Isenman, L. D. (1980). Digestive enzyme transport and secretion in the Pancreas. Dissertation, University of California.Google Scholar
  43. Isenman L. D. (1997) Towards an understanding of intuition and its importance in scientific endeavor. Perspectives in Biology and Medicine 40: 395–403Google Scholar
  44. Isenman, L. D. (2009). Trusting your gut, among other things: Digestive enzyme secretion, intuition, and the history of science. Foundations of Science, 14. doi:10.1007/s10699-009-9140-0
  45. Isenman, L. D. (2010). Understanding intuition: A sense of the whole.Google Scholar
  46. Isenman L.D., Liebow C., Rothman S.S. (1995) Protein transport across membranes: A paradigm in transition. Biochimica Biophysica Acta 1241: 341–370Google Scholar
  47. Isenman L. D., Liebow C., Rothman S. S. (1999) The endocrine secretion of mammalian digestive enzymes by exocrine glands. American Journal of Physiology 276: E223–E232Google Scholar
  48. Isenman L. D., Rothman S. S. (1977) Transport of alpha-amylase across the basolateral membrane of the pancreatic acinar cell. Proceedings of the National Academy of Sciences, USA 74: 4068–4072CrossRefGoogle Scholar
  49. Isenman L. D., Rothman S. S. (1979a) Diffusion-like processes can account for protein secretion by the pancreas. Science 204: 1212–1215CrossRefGoogle Scholar
  50. Isenman L. D., Rothman S. S. (1979) Transpancreatic transport of digestive enzymes. Biochimica Biophysica Acta 585: 321–332Google Scholar
  51. Jackendoff R. (1987) Consciousness and the computational mind. MIT Press, Cambridge, MAGoogle Scholar
  52. Jiang Y., Costello P., Fang F., Huang M., He S. (2006) A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proceedings of the National Academy of Sciences, USA 103: 17048–17052CrossRefGoogle Scholar
  53. Joliot A., Prochiantz A. (2005) Transduction peptides: From technology to physiology. Nature Cell Biology 6: 189–196CrossRefGoogle Scholar
  54. Jung-Beeman M., Bowen E. M. (2000) The right hemisphere maintains solution-related activation for yet-to-be-solved problems. Memory and Cognition 28: 1231–1241Google Scholar
  55. Jung-Beeman M., Bowden E. M., Haberman J., Frymiare J. L., Aerameel-Liu S., Greenblatt R. et al (2004) Neural activity when people solve verbal problems with insight. PLoS Biology 2: 0500–0510CrossRefGoogle Scholar
  56. Kanai R., Tsuchiya N., Verstraten F. A. J. (2006) The scope and limits of top-down attention in unconscious visual processing. Current Biology 16: 2332–2336CrossRefGoogle Scholar
  57. Kelly R. (1985) Pathways of protein secretion in eukaryotes. Science 230: 25–32CrossRefGoogle Scholar
  58. Kounios J., Frymiare J. L., Bowden E. M., Fleck J. I., Subramaniam K., Parrish T. B. et al (2006) The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science 17: 882–890CrossRefGoogle Scholar
  59. Kukley M., Capetillo-Zarante E., Dietrich D. (2007) Vesicular glutamate release from axons in white matter. Nature Neuroscience 10(3): 311–320CrossRefGoogle Scholar
  60. Lau H., Passingham R. (2006) Relative blindsight in normal observers and the neural correlates of visual consciousness. Proceedings of the National Academy of Sciences USA 103: 18736–18768CrossRefGoogle Scholar
  61. Lau H., Passingham R. (2007) Unconscious activation of the cognitive control system in the human prefrontal cortex. Journal of Neuroscience 27: 5805–5811CrossRefGoogle Scholar
  62. Lee P. A., Tullman-Ercek D., Georgiou G. (2006) Bacterial twin-arginine translocation pathway. Annual Review of Microbiology 60: 373–395CrossRefGoogle Scholar
  63. Liebow C., Rothman S. S. (1975) Enteropancreatic circulation of digestive enzymes. Science 189: 472–474CrossRefGoogle Scholar
  64. Liebow C., Rothman S. S. (1976) Equilibration of pancreatic digestive enzymes across zymogen granule membranes. Biochimica Biophysica Acta 455: 241–253CrossRefGoogle Scholar
  65. Maia T., Cleeremans A. (2006) Consciousness: Converging insights from connectionist modeling and neuroscience. Trends in Cognitive Science 9: 397–404CrossRefGoogle Scholar
  66. Mangan B. (1993) Taking phenomenology seriously: The “fringe” and its implications for cognitive research. Consciousness and Cognition 2: 89–108CrossRefGoogle Scholar
  67. Mangan, B. (2001). Sensations ghost: The non-sensory “fringe” of consciousness. PSYCHE 7. http://psyche.cs.monash.edu.au/v7/psyche-7-18-mangan.html.
  68. Mason M., Norton M. I., Van Horn J., Wegner D. M., Grafton S., Macrae C. N. (2007) Wandering minds: The default network and stimulus-independent thought. Science 315: 393–395CrossRefGoogle Scholar
  69. McClelland J. L., Rumelhart D. E. (1986) Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press, CambridgeGoogle Scholar
  70. Metcalfe J. (2000) Feelings and judgments of knowing: Is there a special noetic state?. Consciousness and Cognition 9: 179–186CrossRefGoogle Scholar
  71. Miller G. A. (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63: 81–97CrossRefGoogle Scholar
  72. Mulvenna C. M., Walsh V. (2006) Synesthesia: Supernormal integration?. Trends in Cognitive Sciences 10: 350–352CrossRefGoogle Scholar
  73. Naccache L., Dehaene S. (2001) Unconscious semantic priming extends to novel unseen stimuli. Cognition 80: 215–229CrossRefGoogle Scholar
  74. Nakamura K., Dehaene S., Jobert A., Le Bihan D., Kouider S. (2005) Subliminal convergence of Kanji and Kana words: Further evidence for functional parcellation of the posterior temporal cortex in visual word perception. Journal of Cognitive Neuroscience 17: 954–968CrossRefGoogle Scholar
  75. Nakamura K., Hara N., Kouider S., Takayama Y., Hanajima R., Sakai K., Ugawa Y. (2006) Task-guided selection on dual neural pathways for reading. Neuron 52: 557–564CrossRefGoogle Scholar
  76. Norman E., Price M. C., Duff S. C. (2006) Fringe consciousness in sequence learning: The influence of individual differences. Consciousness and Cognition 15: 723–760CrossRefGoogle Scholar
  77. Norman E., Price M. C., Duff S. C., Mentzoni R. A. (2007) Gradations of awareness in a modified sequence learning task. Consciousness and Cognition 16: 809–837CrossRefGoogle Scholar
  78. Palade G. E. (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347–358CrossRefGoogle Scholar
  79. Palade G. E, Siekevitz P., Cara L. G. (1962) Structure, chemistry and function of the pancreatic exocrine cell. In: DeReuck A., Cameron N. (eds) Ciba foundation symposium on the exocrine pancreas: Normal and abnormal functions. Churchill, London, pp 23–39CrossRefGoogle Scholar
  80. Panek, P. (2007, April 11). Out there. New York Times.Google Scholar
  81. Pessiglione M., Petrovic P., Daunizeau J., Palminteri S., Dolan R. J., Frith C. D. (2008) Subliminal instrumental conditioning demonstrated in the human brain. Neuron 59: 561–567CrossRefGoogle Scholar
  82. Reber A. S. (1996) Implicit learning and tacit knowledge. Oxford University Press, New YorkCrossRefGoogle Scholar
  83. Rothman S. S. (1967) Non-parallel transport of enzyme protein by the pancreas. Nature 213: 460–462CrossRefGoogle Scholar
  84. Rothman S. S. (1975) Protein transport by the pancreas. Science 190: 747–753CrossRefGoogle Scholar
  85. Rothman S. S. (1976) The digestive enzymes of the pancreas: A mixture of inconstant proportions. Annual Review of Physiology 39: 373–389CrossRefGoogle Scholar
  86. Rothman S. S. (1980) The passage of proteins through membranes—Old assumptions and new perspectives. American Journal of Physiology 238: G391–G402Google Scholar
  87. Rothman S. S. (2002) Lessons from the living cell: The limits of reductionism. McGraw-Hill, New YorkGoogle Scholar
  88. Rothman S. S., Isenman L. D. (1974) The secretion of digestive enzyme derived from two parallel intracellular pools. American Journal of Physiology 226: 1082–1087Google Scholar
  89. Sagiv N., Ward J. (2006) Cross modal interactions: Lessons from synesthesia. Progress in Brain Research 155: 259–271CrossRefGoogle Scholar
  90. Schleghecken F., Klapp S. T., Maylor A. (2009) Either or neither, but not both: Locating the effects of masked primes. Proceedings of the Royal Society B 276: 515–521CrossRefGoogle Scholar
  91. Seitz A. R., Kim D., Watanebe T. (2009) Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61: 700–707CrossRefGoogle Scholar
  92. Spivey J. M. (2007) The continuity of mind. Oxford University Press, New YorkGoogle Scholar
  93. Stewart J. (2007) The future evolution of consciusness. Journal of Consciousness Studies 14: 58–92Google Scholar
  94. van Gaal S., Ridderinkhof K.R., van den Wildenberg W.P.M., Lamme V.A.F. (2008) Dissociating consciousness from inhibitory control: Evidence for unconsciously triggered response inhibition in stop-signal task. Journal of Experimental Psychology: Human Perception and Performance 28: 8053–8062Google Scholar
  95. Volz G., von Cramon D. Y. (2006) What neuroscience can tell about intuitive processes in the context of perceptual discovery. Journal of Cognitive Neuroscience 18: 2077–2087CrossRefGoogle Scholar
  96. Wickner W., Schekman R. (2005) Protein translocation across biological membranes. Science 310: 1452–1456CrossRefGoogle Scholar
  97. Wu Z., Jakes K., Samelson-Jones B., Lai B., Zhao Z., London E., Finkelstein A. (2006) Protein translocation by bacterial toxin channels: A comparison of diphtheria toxin and colicin. Biophysical Journal 91: 3249–3256CrossRefGoogle Scholar
  98. Zhong C., Dijksterhuis A., Galinsky A. D. (2008) The merits of unconscious thought in creativity. Psychological Science 19: 912–918CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Women’s Studies Research CenterBrandeis UniversityWalthamUSA

Personalised recommendations