Foundations of Science

, Volume 14, Issue 1–2, pp 137–152 | Cite as

Towards a Theory of Mathematical Argument



In this paper, I assume, perhaps controversially, that translation into a language of formal logic is not the method by which mathematicians assess mathematical reasoning. Instead, I argue that the actual practice of analyzing, evaluating and critiquing mathematical reasoning resembles, and perhaps equates with, the practice of informal logic or argumentation theory. It doesn’t matter whether the reasoning is a full-fledged mathematical proof or merely some non-deductive mathematical justification: in either case, the methodology of assessment overlaps to a large extent with argument assessment in non-mathematical contexts. I demonstrate this claim by considering the assessment of axiomatic or deductive proofs, probabilistic evidence, computer-aided proofs, and the acceptance of axioms. I also consider Jody Azzouni’s ‘derivation indicator’ view of proofs because it places derivations—which may be thought to invoke formal logic—at the center of mathematical justificatory practice. However, when the notion of ‘derivation’ at work in Azzouni’s view is clarified, it is seen to accord with, rather than to count against, the informal logical view I support. Finally, I pose several open questions for the development of a theory of mathematical argument.


Argumentation Proof Mathematics Argument schemes Dialectic Informal logic Azzouni Rav 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberdein A. (2005) The uses of argument in mathematics. In: Hitchcock D. (eds) The uses of argument: Proceedings of a Conference at McMaster University, 18–21 May 2005. Ontario Society for the Study of Argumentation, Ontarios, pp 1–10Google Scholar
  2. Aberdein A. (2007) The informal logic of mathematical proof. In: Van Bendegam J.P., Van Kerkove B. (eds) Perspectives on mathematical practices. Kluwer, Dordecht, pp 135–151CrossRefGoogle Scholar
  3. Adleman L. (1994) Molecular computation of solutions to combinatorial problems. Science, New Series 266(5187): 1021–1024Google Scholar
  4. Aigner, M., & Ziegler, G. M. (2002). Proofs from the book (2nd ed.). Springer.Google Scholar
  5. Allen, C., & Hand, M. (2001). Primer in logic. MIT Press.Google Scholar
  6. Azzouni J. (2004) The derivation indicator view of mathematical practice. Philosophia Mathematica (3) 12: 81–105Google Scholar
  7. Azzouni, J. (2006). Tracking reason. Oxford University Press.Google Scholar
  8. Cáceres I., Lozana M., Saladié P. (2007) Evidence for bronze age cannibalism in El Mirador Cave (Sierra de Atapuerca, Burgos, Spain). American Journal of Physical Anthropology 133: 899–917CrossRefGoogle Scholar
  9. Copi, I., & Cohen, I. (1994). Introduction to logic (9th ed.). Macmillan.Google Scholar
  10. Detlefsen M. (1980) The four-color theorem and mathematical proof. The Journal of Philosophy 77: 803–820CrossRefGoogle Scholar
  11. Detlefsen M. (1992) Poincaré against the logicians. Synthese 90: 349–378CrossRefGoogle Scholar
  12. Detlefsen M. (1993) Poincaré vs. Russell on the role of logic in mathematics. Philosophia Mathematica (III) 1: 24–49CrossRefGoogle Scholar
  13. Euclid. (1956). The thirteen books of Euclid’s elements (Vol. I). Dover.Google Scholar
  14. Fallis D. (1996) Mathematical proof and the reliability of DNA evidence. The American Mathematical Monthly 103(6): 191–197CrossRefGoogle Scholar
  15. Fallis D. (1997) The epistemic status of probabilistic proofs. The Journal of Philosophy 94(4): 165–186CrossRefGoogle Scholar
  16. Fallis D. (2003) Intentional gaps in mathematical proofs. Synthese 134: 45–69CrossRefGoogle Scholar
  17. Finocchiaro, M. (1996). Critical thinking, critical reasoning and methodological reflection. In M. Finocchiaro (Ed.), Arguments about arguments: Systematic, critical and historical essays in logical theory, (pp. 292–326). Cambridge University Press, 2005 (Originally published in Inquiry: Critical thinking across the disciplines 15: pp. 66–79 (1996)).Google Scholar
  18. Finocchiaro, M. (2005). Dialectic, evaluation and argument: Goldman and Johnson on the concept of argument. In M. Finocchiaro (Ed.), Arguments about arguments: Systematic, critical and historical essays in logical theory, (pp. 292–326). Cambridge University Press, (Originally published in Informal Logic 23: pp. 19–49 (2003)).Google Scholar
  19. Finocchiaro M. (2003) Physical-mathematical reasoning: Galileo on the extruding power of terrestrial rotation. Synthese 134: 217–244CrossRefGoogle Scholar
  20. Franklin J. (1987) Non-deductive logic in mathematics. British Journal for Philosophy of Science 38(1): 1–18CrossRefGoogle Scholar
  21. Gödel, K. (1983). What is Cantor’s continuum problem? In P. Benacerraf & H. Putnam,(Eds.), Selected readings in philosophy of mathematics (pp. 470–485). Cambridge University Press, (originally published 1947).Google Scholar
  22. Grootendorst, R., & van Eeemeren, F. H. (2003). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge University Press.Google Scholar
  23. Johnson, R. H. (2000). Manifest rationality: A pragmatic theory of argument. Lawrence Erlbaum Associates, Publishers.Google Scholar
  24. Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. THatcher (Eds.), Complexity of computer computations (pp. 85–103). Plenum.Google Scholar
  25. Krabbe, E. (1991). Quod erat demonstrandum: Wat kan en mag een argumentatietheorie zeggen over bewijzen? In M. M. H. Bax & W. Vuijk (Eds.), Thema’s in de Taalbeheersing: Lezingen van het VIOT-taalbeheersingscongres gehouden op 19, 20 en 21 december 1990 aan de Rijksuniversiteit Groningen, (pp. 8–16). ICG Dordecht.Google Scholar
  26. Krabbe, E. (1997). Arguments, proofs and dialogues. In M. Astroh (Ed.), Dietfried Gerhardus and Gerhard Heinzmann, (Ed.), Dialogisches Handeln: Eine Festschrift für Kuno Lorenz, (pp. 63–75). Spektrum Akademischer Verlag. [This is an updated translation of (Krabbe 1991)].Google Scholar
  27. Lakatos, I. (1976). Proofs and refutations. Cambridge University Press.Google Scholar
  28. Maddy, P. (1988). Believing the axioms, I and II. Journal of Symbolic Logic, 53(2), 482–511 and 53(3), 736–764.Google Scholar
  29. Maddy, P. (1992). Realism in mathematics. Clarendon Press.Google Scholar
  30. Malone M. (2003) Three recalcitrant problems of argument identification. Informal Logic 23(3): 237–261Google Scholar
  31. Mates, B. (1972). Elementary logic (2nd ed.), Oxford University Press.Google Scholar
  32. Maxwell, E. A. (1959). Fallacies in mathematics. Cambridge University Press.Google Scholar
  33. Polya, G. (1968). Mathematics and plausible reasoning (Vols. I and II). Princeton University Press.Google Scholar
  34. Proclus. (1992). Commentary on the first book of Euclid’s Elements (G. Morrow Trans.). Princeton University Press.Google Scholar
  35. Putnam, H. (1975). What is mathematical truth? In H. Putnam (Ed.), Mathematics, matter and method: Philosophical papers (Vol. 1, pp. 60–78). Cambridge University Press.Google Scholar
  36. Rav Y. (1999). Why do we prove theorems? Philosophia Mathematica (3)7, 5–41.Google Scholar
  37. Sandifer, E. (2006). Divergent series. In How Euler Did It, MAA Online.Google Scholar
  38. Scriven, M. (1972). Reasoning. McGraw-Hill.Google Scholar
  39. Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Harvard University Press.Google Scholar
  40. Toulmin, S. E. (2003). The uses of argument, Updated Edition (of 1958). Cambridge University Press.Google Scholar
  41. Tymoczko, T. (1998). The four-color problem and its philosophical significance. In T. Tymoczko (Ed.), New directions in the philosophy of mathematics (pp. 243–268). Princeton University Press, (Originally published in Journal of Philosophy 76(2): 57–83 (1979)).Google Scholar
  42. Walton, D. (2006). Fundamentals of critical argumentation. Cambridge University Press.Google Scholar
  43. Walton, D., & Krabbe, E. (1995). Commitment in dialogue: Basic concepts of interpersonal reasoning. State University of New York Press.Google Scholar
  44. Zermelo, E. (1908). A new proof of the possibility of well-ordering. In J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic, 1879–1931 (pp. 183–198). Harvard University Press, 1967 (Originally published in Mathematische Annalen, 65, 107–128).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Nevada, Las VegasLas VegasUSA

Personalised recommendations