Foundations of Science

, Volume 14, Issue 3, pp 195–216 | Cite as

Conceptual Barriers to Progress Within Evolutionary Biology

  • Kevin N. Laland
  • John Odling-Smee
  • Marcus W. Feldman
  • Jeremy Kendal


In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.


Niche construction Evolutionary biology Ecological inheritance Ecosystem ecology Developmental biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiello L.C., Wheeler P. (1995) The expensive-tissue hypothesis. Current Anthropology 36: 199–221Google Scholar
  2. Amundson R. (2005) The changing role of the embryo in evolutionary thought. Cambridge University Press, LondonGoogle Scholar
  3. Aoki K. (1986) A stochastic model of gene-culture coevolution suggested by the “culture historical hypothesis” for the evolution of adult lactose absorption in humans. Proceedings of the National Academy of Sciences USA 83: 2929–2933Google Scholar
  4. Aoki K., Feldman M.W., Kerr B. (2001) Models of sexual selection on a quantitative genetic trait when preference is acquired by sexual imprinting. Evolution 55(1): 25–32Google Scholar
  5. Arthur W. (2004) Biased embryos and evolution. Cambridge University Press, LondonGoogle Scholar
  6. Balter M. (2005) Are humans still evolving?. Science 309: 234–237Google Scholar
  7. Beltman J.B., Haccou P., ten Cate C. (2003) The impact of learning foster species’ song on the evolution of specialist avian brood parasitism. Behavioural Ecology 14(6): 917–923Google Scholar
  8. Beltman J.B., Haccou P., ten Cate C. (2004) Learning and colonization of new niches: A first step towards speciation. Evolution 58(1): 35–46Google Scholar
  9. Bird A. (2002) DNA methylation patterns and epigenetic memory. Genes and Development 16: 6–21Google Scholar
  10. Bongaarts J., Watkins S.C. (2005) Social interactions and contemporary fertility transitions. Population and Development Review 22(4): 639–682Google Scholar
  11. Boni M.F., Feldman M.W. (2005) Evolution of antibiotic resistance by human and bacterial niche construction. Evolution 59(3): 477–491Google Scholar
  12. Boogert N.J., Paterson D.M., Laland K.N. (2006) The implications of niche construction and ecosystem engineering for conservation biology. Bioscience 56: 570–578Google Scholar
  13. Borenstein E., Kendal J., Feldman M. (2006) Cultural niche construction in a metapopulation. Theoretical Population Biology 70: 92–104Google Scholar
  14. Brandon R., Antonovics J. (1996) The coevolution of organism and environment. In: Brandon R. (eds) Concepts and methods in evolutionary biology. Cambridge University Press, London, pp 161–178Google Scholar
  15. Brown J.H. (1995) Organisms and species as complex adaptive systems: Linking the biology of populations with the physics of ecosystems. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman and Hall, New YorkGoogle Scholar
  16. Carroll S.B. (2005) Endless forms most beautiful. The new science of Evo Devo and the making of the animal kingdom. Weidenfeld and Nicolson, LondonGoogle Scholar
  17. Cavalli-Sforza L.L., Feldman M.W. (1981) Cultural transmission and evolution: A quantitative approach. Princeton University Press, PrincetonGoogle Scholar
  18. Chase J.M., Leibold M.A. (2003) Ecological niches. Linking classical and contemporary approaches. Chicago University Press, ChicagoGoogle Scholar
  19. Crain C.M., Bertness M.D. (2006) Ecosystem engineering across environmental gradients: Implications for conservation and management. BioScience 56(3): 211–218Google Scholar
  20. Dawkins R. (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  21. Dawkins R. (1982) The extended phenotype. Freeman, OxfordGoogle Scholar
  22. Dawkins R. (2004) Extended phenotype—but not too extended. A reply to Laland, Turner and Jablonka. Biology and Philosophy 19(3): 377–396Google Scholar
  23. Dedeine F., Vavre F., Fleury F., Loppin B., Hochberg M. E., Boulétreau M. (2001) Removing symbiotic Wolbachia specifically inhibits oogenesis in a parasitic wasp. Proceedings National Academy of Sciences 98(11): 6247–6252Google Scholar
  24. Donohue K. (2005) Niche construction through phonological plasticity: Life history dynamics and ecological consequences. New Phytologist 166: 83–92Google Scholar
  25. Durham W.H. (1991) Coevolution: Genes, culture and human diversity. Stanford University Press, Stanford, CAGoogle Scholar
  26. Dussourd D.E., Ubik K., Harvis C., Resch J., Meinwald J., Eisner T. (1988) Biparental defence endowment of eggs with acquired plant alkaloid in the moth. Utetheisa ornatrix. Proceedings National Academy of Sciences USA 85: 5992–5996Google Scholar
  27. Estes J.A. (1995) Top-level carnivores and ecosystem effects: Questions and approaches. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman and Hall, New York, pp 151–158Google Scholar
  28. Feldman M.W. (2008) Dissent with modification: Cultural evolution and social niche construction. In: Brown M. (eds) Explaining culture scientifically. University of Washington Press, SeattleGoogle Scholar
  29. Feldman M.W., Cavalli-Sforza L.L. (1976) Cultural and biological evolutionary processes, selection for a trait under complex transmission. Theoretical Population Biology 9: 238–259Google Scholar
  30. Feldman M.W., Cavalli-Sforza L.L. (1989) On the theory of evolution under genetic and cultural transmission with application to the lactose absorption problem. In: Feldman M.W. (eds) Mathematical evolutionary theory. Princeton University Press, PrincetonGoogle Scholar
  31. Gilbert S.F. (2003) The morphogenesis of evolutionary developmental biology. International Journal of Developmental Biology 47: 467–477Google Scholar
  32. Gilbert S.F. (2006) The generation of novelty: The province of developmental biology. Biological Theory 1: 209–212Google Scholar
  33. Gilbert S.F., Opitz J., Raff R.A. (1996) Resynthesizing evolutionary and developmental biology. Developmental Biology 173: 357–372Google Scholar
  34. Godfrey-Smith P. (1996) Complexity and the function of mind in nature. Cambridge University Press, LondonGoogle Scholar
  35. Goldstone J.V. et al (2006) The chemical defensome: Environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Developmental Biology 300: 366–384Google Scholar
  36. Gould S.J., Lewontin R.C. (1979) The Spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings Royal Society London B 205: 581–598CrossRefGoogle Scholar
  37. Griffiths P.E., Gray R.D. (2001) Darwinism and Developmental Systems. In: Oyama S., Griffiths P.E., Gray R.D. (eds) Cycles of contingency: Developmental systems and evolution. MIT Press, Cambridge, pp 195–217Google Scholar
  38. Griffiths, P. E. & Gray, R. D. (2004). The developmental systems perspective. Organism-environment systems as units of development and evolution. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes. OUP.Google Scholar
  39. Gurney W.S.C., Lawton J.H. (1996) The population dynamics of ecosystem engineers. Oikos 76: 273–283Google Scholar
  40. Hamburger V. (1980) Embryology and the modern synthesis in evolutionary theory. In: Mayr E., Provine W. (eds) The evolutionary synthesis: Perspectives on the Unification of Biology. Cambridge University Press, New York, pp 97–112Google Scholar
  41. Hansell M.H. (1993) The ecological impact of animal nests and burrows. Functional Ecology 7: 5–12Google Scholar
  42. Heyes C.M., Galef B.G. (1996) Social learning in animals: The roots of culture. Academic Press, LondonGoogle Scholar
  43. Holden C., Mace R. (1997) Phylogenetic analysis of the evolution of lactose digestion in adults. Human Biology 69: 605–628Google Scholar
  44. Holt R.D. (1995) Linking species and ecosystems: Where’s Darwin?. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman and Hall, New YorkGoogle Scholar
  45. Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881–884Google Scholar
  46. Hui C., Li Z.Z., Yue D.X. (2004) Metapopulation dynamics and distribution, and environmental heterogeneity induced by niche construction. Ecological Modelling 177: 107–1189Google Scholar
  47. Hui C., Yu D. (2005) Niche construction and polymorphism maintenance in metapopulations. Ecological Research 20: 115–119Google Scholar
  48. Ihara Y., Feldman M.W. (2004) Cultural niche construction and the evolution of small family size. Theoretical Population Biology 65: 105–111Google Scholar
  49. Jablonka E., Lamb M.J. (2005) Evolution in four dimensions. MIT Press, Cambridge, MassGoogle Scholar
  50. Jones C.G., Lawton J.H. . (1995) Linking species and ecosystems. Chapman and Hall, New YorkGoogle Scholar
  51. Jones C.G., Lawton J.H., Shachak M. (1994) Organisms as ecosystem engineers. Oikos 69: 373–386Google Scholar
  52. Jones C.J., Lawton J.H., Shachak M. (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 1946–1957CrossRefGoogle Scholar
  53. Kendal, J. R., Ihara, Y., & Feldman, M. W. (2005). Cultural niche construction with application to fertility control: A model for education and social transmission of contraceptive use. Morrison Institute Working Paper Series, 102.Google Scholar
  54. Kerr B., Schwilk D.W., Bergman A., Feldman M.W. (1999) Rekindling an old flame: A haploid model for the evolution and impact of flammability in resprouting plants. Evolutionary Ecology Research 1: 807–833Google Scholar
  55. Keys D.N., Lewis D.L., Selegue J.E., Pearson B.J., Goodrich L.V., Johnson R.L., Gates J., Scott M.P., Carroll S.B. (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283: 532–534Google Scholar
  56. Kirkpatrick M., Dugatkin L.A. (1994) Sexual selection and the evolutionary effects of copying mate choice. Behavioural Ecology and Sociobiology 34: 443–449Google Scholar
  57. Kirkpatrick M., Lande R. (1989) The evolution of maternal characters. Evolution 43: 485–503Google Scholar
  58. Laland K.N. (1994) On the evolutionary consequences of sexual imprinting. Evolution 48(2): 477–489Google Scholar
  59. Laland K N., Odling-Smee F.J., Feldman M.W. (1996) On the evolutionary consequences of niche construction. Journal of Evolutionary Biology 9: 293–316Google Scholar
  60. Laland K.N., Odling-Smee F.J., Feldman M.W. (1999) evolutionary consequences of niche construction and their implications for ecology. Proceedings of the National Academy of Sciences USA 96: 10242–10247Google Scholar
  61. Laland K.N., Odling-Smee F.J., Feldman M.W. (2001) Cultural niche construction and human evolution. Journal of Evolutions Biology 14: 22–33Google Scholar
  62. Laland K.N., Odling-Smee J., Feldman M.W. (2000) Niche construction, biological evolution, and cultural change. Behavioral and Brain Sciences 23: 131–175Google Scholar
  63. Laland K.N., Odling-Smee F.J., Gilbert S.F. (2008) Evo-devo and niche construction: Building bridges. Journal of Experimental Zoology, Part B 310: 549–566Google Scholar
  64. Laland K.N., Sterelny K. (2006) Seven reasons (not) to neglect niche construction. Evolution 60: 1751–1762Google Scholar
  65. Lewens T. (2003) Prospects for an evolutionary policy. Philosophy 78(306): 495–514Google Scholar
  66. Lewontin R.C. (1982) Organism and environment. In: Plotkin H.C. (eds) Learning, development and culture. Wiley, New YorkGoogle Scholar
  67. Lewontin R.C. (1983) Gene, organism, and environment. In: Bendall D.S. (eds) Evolution from molecules to men. Cambridge University Press, LondonGoogle Scholar
  68. Lewontin R. (2000) The triple helix: Gene, organism, and environment. Harvard University Press, Cambridge, MAGoogle Scholar
  69. Likens G.E. (1995) Forward. In: Jones C.G., Lawton J.H. (eds) Linking species and ecosystems. Chapman& Hall, New YorkGoogle Scholar
  70. Maynard Smith J. (1982) Evolution and the theory of games. Cambridge University Press, LondonGoogle Scholar
  71. Mayr E. (1961) Cause and effect in biology. Science 134: 1501–1506Google Scholar
  72. Mayr E. (1984) The triumph of the evolutionary synthesis. Times Literary Supplement Nov 2: 1261–1262Google Scholar
  73. Mousseau T.A., Fox C.W. (1998) Maternal effects as adaptations. Oxford University Press, OxfordGoogle Scholar
  74. Odling-Smee F.J. (1988) Niche constructing phenotypes. In: Plotkin H.C. (eds) The role of behavior in evolution. MIT Press, Cambridge, pp 73–132Google Scholar
  75. Odling-Smee J. (2006) Chapter 3: How niche construction contributes to human gene-culture coevolution. In: Wells J.C.K., Strickland S., Laland K. (eds) Social information transmission and human biology. Taylor & Francis, Boca Raton, FLGoogle Scholar
  76. Odling-Smee F.J., Laland K.N., Feldman M.W. (1996) Niche construction. The American Naturalist 147: 641–648Google Scholar
  77. Odling-Smee F.J., Laland K.N., Feldman M.W. (2003) Niche construction. The neglected process in evolution. Monographs in Population Biology,37. Princeton University Press, PrincetonGoogle Scholar
  78. O’Neill R.V., DeAngelis D.L., Waide J.B., Allen T.F.H. (1986) A hierarchical concept of ecosystems. Princeton University Press, PrincetonGoogle Scholar
  79. Oyama S. (1985) The ontogeny of information. Cambridge University Press, Cambridge, UKGoogle Scholar
  80. Oyama S., Griffiths P.E., Gray R.D. (2001) Cycles of contingency: Developmental systems and evolution. MIT Press, CambridgeGoogle Scholar
  81. Pinker, S. (1994). The language instinct: The new science of language and mind. Allen Lane, Penguin, St. Ives.Google Scholar
  82. Raff R.A. (2000) Evo-devo: the evolution of a new discipline. Natural Review of Genetics 1: 74–79Google Scholar
  83. Reiners W.R. (1986) Complementary models for ecosystems. American Naturalist 127: 59–73Google Scholar
  84. Rice S.H. (2004) Evolutionary theory. Mathematical and conceptual foundations. Sinauer Sanderland, MassGoogle Scholar
  85. Richardson M. (1999) Vertebrate evolution: The developmental origins of adult variation. BioEssays 21: 604–613Google Scholar
  86. Richerson P.J., Boyd R. (2005) Not by genes alone. Chicago University Press, ChicagoGoogle Scholar
  87. Robertson D.S. (1991) Feedback theory and Darwinian evolution. Journal of Theoretical Biology 152: 469–484Google Scholar
  88. Schwilk D.W., Ackerly D.D. (2001) Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94: 326–336Google Scholar
  89. Silver M., Di Paolo E. (2006) Spatial effects favour the evolution of niche construction. Theoretical Population Biology 20: 387–400Google Scholar
  90. Sterelny K. (2001) Niche construction, developmental systems, and the extended replicator. In: Oyama S., Griffiths P.E., Gray R.D. (eds) Cycles of contingency: Developmental systems and evolution. MIT Press, Cambridge, MassGoogle Scholar
  91. Sterelny, K. (2003). Thought in a hostile world. The evolution of human cognition. Blackwell.Google Scholar
  92. Sterelny K. (2005) Made by each other: Organisms and their environment. Biology and Philosophy 20(1): 21–36Google Scholar
  93. Stinchcombe J.R., Schmitt J. (2006) Ecosystem engineers as selective agents: The effects of leaf litter on emergence time and early growth in Impatiens capensis. Ecology Letters 9: 258–270Google Scholar
  94. Tebbich S., Taborsky M., Febl B., Blomqvist D. (2001) Do woodpecker finches acquire tool-use by social learning?. Proceedings of the Royal Society of London B 268: 2189–2193Google Scholar
  95. ten Cate C. (2000) How learning mechanisms might affect evolutionary processes. Trends in Ecology Evolution 15: 179–181Google Scholar
  96. ten Cate C., Bateson P.P.G. (1988) Sexual selection: The evolution of conspicuous characteristics in birds by means of imprinting. Evolution 42: 1355–1358Google Scholar
  97. Tishkoff S.A., Reed F.A., Ranciaro A., Voight B.F., Babbitt C.C. et al (2006) Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics 39: 31–40Google Scholar
  98. Tomasello M., Carpenter M., Call J., Behne T., Moll H. (2005) Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences 28: 675–735Google Scholar
  99. Ulijaszek S.J., Strickland S.S. (1993) Nutritional anthropology. Prospects and perspectives. Smith-Gordon, LondonGoogle Scholar
  100. Via S., Gomulkiewics R., de Jong G., Scheiner S.M., Schlichting C.D., van Tienderen P.H. (1995) Adaptive phenotypic plasticity: Consensus and controversy. TREE 10: 212–217Google Scholar
  101. Vitousek P.M. (1986) Biological invasions and ecosystem properties: Can species make a difference. In: Mooney H.A., Drake J.A. (eds) Ecology of biolgocal invasions of North America and Hawaii. Springer-Verlag, New YorkGoogle Scholar
  102. Waddington, C. H. (1959). Evolutionary adaptation. In S. Tax (Ed.), The evolution of life. Evolution after Darwin (Vol. 1, pp. 381–402).Google Scholar
  103. Waddington, C. H. (1969). Paradigm for an evolutionary process. In C. H. Waddington (Ed.), Towards a theoretical biology (pp. 106–128). Edinburgh University Press.Google Scholar
  104. West-Eberhard M.J. (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  105. Williams G.C. (1992) Gaia, nature worship, and biocentric fallacies. Quarterly Review of Biology 67: 479–486Google Scholar
  106. Wolf J.B., Brodie E.D. III, Cheverud J.M., Moore A.J., Wade M.J. (1998) Evolutionary consequences of indirect genetic effects. Trends in Ecology and Evolution 13: 64–69Google Scholar
  107. Wolf, J.B., Brodie, E.D., Wade, M.J. (eds) (2000) Epistasis and the evolutionary process. Oxford University Press, OxfordGoogle Scholar
  108. Wright J.P., Jones C.G. (2006) The concept of organisms as ecosystem engineers ten years on: Progress, limitations and challenges. Bioscience 56(3): 203–210Google Scholar
  109. Xu J., Gordon J.I. (2003) Honor thy symbionts. Proceedings National Academy of Sciences 100(18): 10452–10459Google Scholar
  110. Zentall T.R., Galef B.G. Jr. (1988) Social learning: Psychological and biological perspectives. Erlbaum, Hillsdale, NJGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kevin N. Laland
    • 1
  • John Odling-Smee
    • 2
  • Marcus W. Feldman
    • 3
  • Jeremy Kendal
    • 4
  1. 1.School of BiologyUniversity of St. AndrewsFifeUK
  2. 2.Mansfield CollegeUniversity of OxfordOxfordUK
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA
  4. 4.Department of AnthropologyUniversity of DurhamDurhamUK

Personalised recommendations