Foundations of Science

, Volume 11, Issue 4, pp 349–368 | Cite as

Understanding Pluralism in Climate Modeling

  • W. S. ParkerEmail author


To study Earth’s climate, scientists now use a variety of computer simulation models. These models disagree in some of their assumptions about the climate system, yet they are used together as complementary resources for investigating future climatic change. This paper examines and defends this use of incompatible models. I argue that climate model pluralism results both from uncertainty concerning how to best represent the climate system and from difficulties faced in evaluating the relative merits of complex models. I describe how incompatible climate models are used together in ‘multi-model ensembles’ and explain why this practice is reasonable, given scientists’ inability to identify a ‘best’ model for predicting future climate. Finally, I characterize climate model pluralism as involving both an ontic competitive pluralism and a pragmatic integrative pluralism.


climate change computer simulation models pluralism uncertainty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailer-Jones, D. 2000Modelling Extended Extragalactic Radio SourcesStudies in the History and Philosophy of Modern Physics314974CrossRefGoogle Scholar
  2. Dai, A., Wigley, T.M.L., Boville, B.A., Kiehl, J.T., Buja, L.E. 2001Climates of the Twentieth and Twenty-First Centuries Simulated by the NCAR Climate System ModelJournal of Climate14485519CrossRefGoogle Scholar
  3. Edwards, P.N. 2000A Brief History of Atmospheric General Circulation ModelingRandall, D.A. eds. General Circulation Development, Past Present and Future: The Proceedings of a Symposium in Honor of Akio ArakawaAcademic PressNew York6790Google Scholar
  4. Holton, J.R. 1992Introduction to Dynamic MeteorologyAcademic PressSan Diego, CAGoogle Scholar
  5. Houghton, J.T.Meira Filho, L.GCallender, B.A.Harris, N.Kattenberg, A.Maskell, K. eds. 1996Climate Change 1995: The Scientific BasisCambridge University PressCambridge, UKGoogle Scholar
  6. Houghton, J.T.Ding, Y.Griggs, D.J.Noguer, M.Linden, P.J. eds. 2001Climate Change 2001: The Scientific BasisCambridge University PressCambridge, UKGoogle Scholar
  7. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D. 1996The NCEP/NCAR 40-Year Reanalysis ProjectBulletin of the American Meteorological Society77437471CrossRefGoogle Scholar
  8. Lambert, S., Boer, G. 2001CMIP1 Evaluation and Intercomparison of Coupled Climate ModelsClimate Dynamics1783106CrossRefGoogle Scholar
  9. Mitchell, S.D. 2002Integrative PluralismBiology and Philosophy175570CrossRefGoogle Scholar
  10. Oreskes, N., Belitz, K. 2001Philosophical Issues in Model AssessmentAnderson, M.G.Bates, P.D. eds. Model Validation: Perspectives in Hydrological ScienceWiley & SonsChichester2341Google Scholar
  11. Shackley, S., Risbey, I., Stone, P., Wynne, B. 1999Adjusting to Policy Expectations in Climate Change Modeling: An Interdisciplinary Study of the Use of Flux Adjustments in Coupled A/O GCMsClimatic Change43413454CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Science Studies ProgramUniversity of CaliforniaLa JollaUSA

Personalised recommendations