Foundations of Science

, Volume 10, Issue 2, pp 153–245 | Cite as

Symbolic Languages and Natural Structures a Mathematician’s Account of Empiricism

  • Hermann G. W. Burchard


The ancient dualism of a sensible and an intelligible world important in Neoplatonic and medieval philosophy, down to Descartes and Kant, would seem to be supplanted today by a scientific view of mind-in-nature. Here, we revive the old dualism in a modified form, and describe mind as a symbolic language, founded in linguistic recursive computation according to the Church-Turing thesis, constituting a world L that serves the human organism as a map of the Universe U. This methodological distinction of L vs. U helps to understand how and why structures of phenomena come to be opposed to their nature in human thought, a central topic in Heideggerian philosophy. U is uncountable according to Georg Cantor’s set theory but Language L, based on the recursive function system, is countable, and anchored in a Gray Area within U of observable phenomena, typically symbols (or tokens), prelinguistic structures, genetic-historical records of their origins. Symbols, the phenomena most familiar to mathematicians, are capable of being addressed in L-processing. The Gray Area is the human Environment E, where we can live comfortably, that we manipulate to create our niche within hostile U, with L offering overall competence of the species to survive. The human being is seen in the light of his or her linguistic recursively computational (finite) mind. Nature U, by contrast, is the unfathomable abyss of being, infinite labyrinth of darkness, impenetrable and hostile to man. The U-man, biological organism, is a stranger in L-man, the mind-controlled rational person, as expounded by Saint Paul. Noumena can now be seen to reside in L, and are not fully supported by phenomena. Kant’s noumenal cause is the mental L-image of only partly phenomenal causation. Mathematics occurs naturally in pre-linguistic phenomena, including natural laws, which give rise to pure mathematical structures in the world of L. Mathematical foundation within philosophy is reversed to where natural mathematics in the Gray Area of pre-linguistic phenomena can be seen to be a prerequisite for intellectual discourse. Lesser, nonverbal versions of L based on images are shared with animals.


Mind-in-Nature Language Systems recursive functions Church-Turing thesis pre-linguistic structures phenomenal and transcendental uses of language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Admiralty and Maritime Law: 2002, Richard Vaughan, Melbourne, Florida. Online. Scholar
  2. Arnold, V.I., Avez, A. 1968Ergodic Problems of Classical MechanicsW.A. BenjaminNew York, AmsterdamGoogle Scholar
  3. Arthur, R. T. W.: 2001, Leibniz: The Labyrinth of the Continuum. Writings of 1672 to 1686: edition and translation of unpublished Latin manuscripts by Leibniz on the continuum problem, Yale University Press.Google Scholar
  4. St. Andrews Mathematics Biographies: 2002, St. Andrews University Online. Scholar
  5. Barbiero, D.: 2002, Phenomenological Critique of Representationalism. Dictionary of Philosophy of Mind, Chris Eliasmith, ed., Online. Scholar
  6. Grinder J. and R. Bandler: 1975, 1976, The Structure of Magic I and II. Palo Alto: Science and Behavior Books.Google Scholar
  7. Cartier, P., DeWitt-Morette, C. 1995A New Perspective on Functional IntegrationJournal of Mathematical Physics3622372312[Mathematical Reviews 1329253 (96e:58023)]CrossRefGoogle Scholar
  8. Chomsky, N.: 1957, Syntactic Structures Mouton. The Hague.Google Scholar
  9. Chomsky, N. 1972Language and MindHarcourt Brace JovanovichNew YorkGoogle Scholar
  10. Chomsky, N. 2002On Nature and Language, with introduction and edited by Adriana Belletti and Luigi RizziCambridge University PressCambridgeGoogle Scholar
  11. Covey, S.R. 1989The Seven Habits of Highly Effective PeopleSimon & SchusterNew York, London, Toronto, Sydney, Tokyo, Singapore69Google Scholar
  12. Chaitin, G. J.: 2002, On the intelligibility of the universe and the notions of simplicity, complexity and irreducibility. Lecture, Philosophy Congress on Limits and Transcending Limits, Bonn, 2002. (Also given at: Kurt Gödel, die Grenzen der Mathematik und rotierende Universen, Symposium, ZKM, Karlsruhe.)Google Scholar
  13. Chaitin, G. J.: 2003, Leibniz, Information, Math and Physics, Wittgenstein Symposium on Knowledge and Belief, Kirchberg, Austria, August 2003.Google Scholar
  14. Chaitin, G. J.: 2003, Two Philosophical Applications of Algorithmic Information Theory. In C. S. Calude, M. J. Dinneen, V. Vajnovszki (eds.), Proceedings DMTCS’03, Springer Lecture Notes in Computer Science, 2731: 1–10.Google Scholar
  15. Chaitin, G.J. 2003L’Univers est-il intelligible? La RechercheDécembre 20033703441Google Scholar
  16. Dennett, D. C.: 1992, Verbal Language as a Communicative System. Proceedings AICA conference 1992, Milan. papers/verblang.htmGoogle Scholar
  17. Descartes, R.: 1644, Principles of Philosophy, II, 3. E-text Project Gutenberg, John Veitch, transl. Scholar
  18. Eliasmith, C.: 2002, Phenomenalism. Dictionary of Philosophy of Mind, Chris Eliasmith, ed., online.∼ philos/ MindDict/ phenomenalism.htmlGoogle Scholar
  19. Gödel, K. 1931Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. IMonatshefte der Mathematik und Physik38173198CrossRefGoogle Scholar
  20. Gold, B.: 2001, Review of Lakoft and Nunez (2000). MAA Online. Scholar
  21. Hauser, M. D., Chomsky, N., Fitch, W. T. 2002The Faculty of Language: What Is It, Who Has It, and How Did It Evolve?science29815691579CrossRefPubMedGoogle Scholar
  22. Heidegger, M. 1959Introduction to Metaphysics, English translationYale University PressNew Haven and LondonGoogle Scholar
  23. Heidegger, M. 1979Sein und Zeit15Max NiemeyerTübingenGoogle Scholar
  24. Heidegger, M.: 1929, 1962, Kant und das Problem der Metaphysik, 2nd edn. Frankfurt a. M: Vittorio Klostermann.Google Scholar
  25. Hilbert, D.: 1900, The Problems of Mathematics. Address to the 2nd International Congress of Mathematicians, Paris, §9. David E. Joyce: English translation. Online:∼djoyce/hilbert/problems.htmlGoogle Scholar
  26. Hobbes, T.: 1651, Leviathan, CHAPTER XIII. Electronic text by Bill Uzgalis with thanks to Blupete., http:/ Scholar
  27. Husserl, E.: 1936, The crisis of European sciences and transcendental phenomenology; an introduction to phenomenological philosophy. English translation: 1970. Northwestern University Press, Evanston. German edition: 1996, with introduction by Elisabeth Ströker, Felix Meiner Verlag, Hamburg.Google Scholar
  28. Kant, I.: 1781, 1787, Critique of Pure Reason. Author’s English rendition Based on translation by F. Max Müller: 1966, English Translation. Anchor Books, Garden City, New York.Google Scholar
  29. Kant, I.: 1756, 1770, De mundi intelligibilis atque sensibilis forma et principiis. Wilhelm Weischedel, (ed.): 1958. Insel, Wiesbaden.Google Scholar
  30. Kant, I.: 1783, Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. Wilhelm Weischedel (ed.): 1958. Insel, Wiesbaden.Google Scholar
  31. Kitcher, P. 1991Transcendental PsychologyOxford University PressOxfordGoogle Scholar
  32. Kleene, S. C. 1952Introduction to MetamathematicsVan NostrandPrincetonGoogle Scholar
  33. Kolmogorov, A. N. 1933Grundbegriffe derWahrscheinlichkeitsrechnungSpringerBerlinGoogle Scholar
  34. Korzybski, A. 1933Science and SanityInstitute for General SemanticsBrooklyn, N.Y.5th edn.: 1994Google Scholar
  35. Kulstad, M. and L. Carlin: 2002, Leibniz’s Philosophy of Mind. Stanford Encyclopedia of Philosophy (Fall 2002 Edition), Edward N. Zalta, ed., online. Scholar
  36. Lakatos, I. 1998A Renaissance of Empiricism in Recent Philosophy of Mathematics?Thomas, Tymoczko eds. New Directions in the Philosophy of Mathematics, An AnthologyPrinceton University Press, Institute for General SemanticsPrinceton, NJ, Brooklyn, N.Y.Revised and Expanded EditionGoogle Scholar
  37. Lakoff, G., Johnson, M. 1998Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western ThoughtBasic BooksNew YorkGoogle Scholar
  38. Lakoff, G., Nunez, R. E. 2000Where mathematics comes from: how the embodied mind brings mathematics into beingBasic BooksNew YorkGoogle Scholar
  39. Leibniz, G. W.: New Essays on Human Understanding. Translated and edited by Peter Remnant and Jonathon Bennett. Cambridge: Cambridge UP, 1982, bk.III, ch.7, sec.6 (RB, 333).Google Scholar
  40. Leibniz, G. W.: 1666, On the Art of Combinations. Die Philosophischen Schriften von Gottfried Wilhelm Leibniz. C.I. Gerhardt, ed.: 1875–1890, Weidman, Berlin IV, 64 (P, 3)).Google Scholar
  41. Leithart, P. J.: 1994, Heidegger Deconstructed. Book review (of: Martin Heidegger: A Political Life, by Hugo Ott; The Deconstruction of Literature: Criticism after Auschwitz, by David Hirsch; Heidegger’s Crisis: Philosophy and Politics in Nazi Germany, by Hans Sluga). Contra Mundum, Online Forum.∼contra_m/cm/Google Scholar
  42. Lorenzen, P. 1955Einführung in die operative Logik und MathematikSpringerBerlin, Heidelberg, New YorkGoogle Scholar
  43. Madden, J. J. 2001Review of Lakoff and Johnson (1998)Notices of the American Mathematical Society4811821188Google Scholar
  44. Malebranche, N.: 1712, 1721, De la recherche de la vérité, où l’on traite de la nature de l’esprit de l’homme, et de l’usage qu’il en doit faire pour ´eviter l’erreur dans les sciences, I–IV. Paris. Thomas M. Lennon: 1980, The Search after Truth, Elucidations, English translation. Ohio State University Press, Columbus, Elucidation Sixteen, p. 688, & especially Elucidations on Optics, Last Elucidation, pp. 724–725.Google Scholar
  45. Mills, L. H. 1913Dictionary of the Gathic LanguageF. A. BrockhausLeipzigGoogle Scholar
  46. Poincare, H. 1914The Value of ScienceDoverNew York141958Google Scholar
  47. Popper, K. R., Eccles, J. C. 1977The Self and its BrainSpringerBerlin, Heidelberg, London, New YorkGoogle Scholar
  48. Quine, W. O. 1960Word and ObjectMIT PressCambridge, MAGoogle Scholar
  49. Quine, W. O. 1970Philosophy of LogicPrentice HallEnglewood CliffsGoogle Scholar
  50. Quine, W. O., Ullian, J. S. 1970The Web of BeliefRandom HouseNew YorkGoogle Scholar
  51. Scha, R. Language theory and Language technology; competence and performance. Institute for Logic, Language and Computation, University of Amsterdam, Online. Edited English translation of: “Taaltheorie en taaltechnologie; competence en performance”, in: R. de Kort and G.L.J.␣Leerdam (eds.): Computertoepassingen in de Neerlandistiek. Almere: LVVN, 1990, pp. 7–22.∼iaaa/rs/LeerdamE.htmlGoogle Scholar
  52. Schmandt-Besserat, D. 1992Before Writing, Vol. I, From Counting to CuneiformUniversity of Texas PressAustinGoogle Scholar
  53. Sinai, Ja. G. 1963On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanicsSoviet Math. Dokl.418181822[Mathematical Reviews 0214727]Google Scholar
  54. Smith, D. W.: 2003, Phenomenology, Stanford Encyclopedia of Philosophy (Winter 2003 Ed.), Edward N. Zalta, ed., online. http://plato.stanford. edu/archives/win2003/entries/phenomenology/Google Scholar
  55. Tolstoy L.: 1865–1869, War and Peace.Google Scholar
  56. Thompson, B. Count Rumford: 1798, Heat is a Form of Motion: An Experiment in Boring Cannon. Philosophical Transactions 88.Google Scholar
  57. Taylor, G. R. 2002Zermelo’s Cantorian theory of systems of infinitely long propositionsThe Bulletin of Symbolic Logic8478515[Mathematical Reviews 1956866 (2003k:03006)]Google Scholar
  58. Uchii, S. 2001Theory Reduction: The Case of the Kinetic Theory of GasesKyoto UniversityJapan∼suchii/reduction1.html, Scholar
  59. Weinberg, S. 1976The Forces of NatureBulletin of the American Society of Arts Sciences292829Google Scholar
  60. Weizsäcker, C. F. v.: 1966, Nachwort zu Goethes Farbenlehre, in: Goethe, Werke (Hamburger Ausgabe). Erich Trunz, (ed.), C. H. Beck, Hamburg, Vol. 1, pp. 537–554. Scholar
  61. Weizsäcker, C. F. v. 1971Einheit der NaturCarl HanserMünchen & WienGoogle Scholar
  62. Weizsäcker, C. F. v. 1951Kontinuität und Möglichkeit. Eine Studie über die Beziehung zwischen den Gegenständen der Mathematik und PhysikDie Naturwissenschaften38533543CrossRefGoogle Scholar
  63. Wigner, E. 1960The Unreasonable Effectiveness of Mathematics in the Natural SciencesCommunications in Pure and Applied Mathematics13114∼matc/MathDrama/reading/Wigner.htmlGoogle Scholar
  64. Zermelo, E. 1935Grundlagen einer allgemeinen Theorie der mathematischen Satzsysteme (Erste Mitteilung)Fundamenta Mathematicae25136146Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of MathematicsOklahoma State UniversityStillwaterUSA

Personalised recommendations