Advertisement

Does the period table appear doubled? Two variants of division of elements into two subsets. Internal and secondary periodicity

  • Naum S. ImyanitovEmail author
Article
  • 153 Downloads

Abstract

Demarcation of elements for two subsets appears to be the most fundamental approach to their classification. If one draws a vertical straight line through the middle of each block of elements in the Periodic table, all the elements are divided into two subsets: “early” and “later”. For example, in the d-block, the early ones are Sc–Mn, and the late ones, respectively, are Fe–Zn. Later elements partially repeat the properties of the early ones, and this is defined as the internal periodicity. Another criterion for dividing the elements into two subsets is the evenness and oddness of the sum of n + l, where n is the principal quantum number, and l is the orbital quantum number for the outer electron subshells. Properties of the odd elements (for example, B–Ne, Ga–Kr, Tl–Rn in the p-block) are closer to each other than to properties of even elements (Al–Ar, In–Xe), and vice versa. This regularity is manifested as the secondary periodicity. The history of concepts, which considered the existence of subsets as well as of inner and secondary periodicities, is discussed. The features of the electronic structure, which underlie the existence of subsets, are considered. The existence of subsets was depicted earlier by dividing the periodic table into two tables or by applying a mirror-symmetric table. Small changes are proposed in the conventional Periodic table, allowing to reflect the existence of the considered subsets.

Keywords

Periodic system Double periodic tables Internal periodicity Secondary periodicity Classification of elements Early and late elements Even and odd of the sum of n + l elements 

References

  1. Alternative Periodic Table.: The Chemogenesis web book, The INTERNET Database of Periodic Tables. Curator: M.R. Leach (2017). http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=739. Accessed 23 Feb 2017
  2. Balarev, D., Andreev, S.T.: Broader regularity in the periodic system. Annuaire Univ. Sofia. II Fac. Sci. 46 (Livre 2), 159–175 (1950). (in Bulgarian) Google Scholar
  3. Basolo, F., Pearson, R.G.: Mechanisms of Inorganic Reactions: A Study of Metal Complexes in Solution, 2nd edn. Wiley, New York (1967)Google Scholar
  4. Bent, H.: New Ideas in Chemistry from Fresh Energy for the Periodic Law. AuthorHouse, Bloomington (2006)Google Scholar
  5. Berkengejm, A.M.: Theoretical Foundations of Chemistry, p. 146. GIZ, Moskow-Leningrad (1926). (in Russian) Google Scholar
  6. Biltz, W., Klemm, W.: Die Unterteilung der Reichen der Übergangselemente. Ztsch. Elektrochem. 39, 597–598 (1933)Google Scholar
  7. Biron, E.V.: Phenomena of secondary periodicity. Zh. Russ. Fiz.-Khim. Obshch. Ch. Khim. 47, 964–988 (1915). (in Russian) Google Scholar
  8. Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 1798–1977(26), 1–24 (1913)CrossRefGoogle Scholar
  9. Brandt, S., Dahmen, H.D.: The Picture Book of Quantum, 4th edn, p. 251. Springer, New York (2012)CrossRefGoogle Scholar
  10. Brauner, B.: Über die Stellung der Elemente der seltenen Erden im periodischen System. Ztsch. Elektrochem. 14, 525–527 (1908)CrossRefGoogle Scholar
  11. Burdett, N.A., Hayhurst, A.N.: Determination of the rate coefficients of A + X = A+ + X- and AX + M = A+ X- + M where A is a metal atom, X a halogen atom and M a flame species. Philos. Trans. Royal Soc. (Lond.) Ser. A. 290, 299–325 (1979)CrossRefGoogle Scholar
  12. Cartledge, G.H.: The correlation of thermochemical data by the ionic potential. J. Phys. Colloid Chem. 55, 248–256 (1951)CrossRefGoogle Scholar
  13. Cerasoli, E.: The periodic system and Pauli’s exclusion principle. Chimica nell’Industria, nell’Agricoltura, nella Biologia e nelle Realizzazioni Corporative. 17, 37–43 (1941)Google Scholar
  14. Chistyakov, V.M.: “Secondary Periodicity of Biron” in secondary d-subgroups of the short periodic table. Zh. Obshch. Khim. 38, 209–210 (1968). (in Russian) Google Scholar
  15. Didyk, Y. K.: Derivation of the periodic law on the basis of quantum mechanics. The existence of mirror-symmetric sets of elements. In: Sb. Nauchn. Trudov Noril’sk. Vech. Industr. In-ta. Krasnoyarsk. 15, 37–62 (1973). (in Russian) Google Scholar
  16. Didyk, Y.K., Makarenya A.A., Sukhomlinov B.D.: Experimental substantiation of the division of a set of elements into two symmetrical subsets. In: Sadovskij G.I. (ed.) Dobycha i pererabotka rud tsvetnykh metallov, pp. 117–122. Izd-vo Noril’sk. Vech. Industr. In-t., Noril’sk, (1978). (in Russian) Google Scholar
  17. Didyk, Y.K.: Periodic systems of elements, conservation laws and corresponding similarity groups. In: Tyukhtin V.S., Urmantsev Yu.A. (eds.) Sistema. Simmetriya. Garmoniya, pp. 244–260. Mysl’, Moscow (1988). (in Russian) Google Scholar
  18. Didyk, Yu. K., Astaf’eva E.M.: Mirror symmetry in the structure of an atom and periodicity of elements. Khimizdat, Sankt-Peterburg (Russia). (2008). (in Russian) Google Scholar
  19. Frackiewicz, K., Czerwinski, M., Siekierski, S.: Secondary periodicity in the tetrahalogeno complexes of the group 13 elements. Eur. J. Inorg. Chem. 19, 3850–3856 (2005)CrossRefGoogle Scholar
  20. Ghanty, T.K., Ghosh, S.K.: Spin-polarized generalization of the concepts of electronegativity and hardness and the description of chemical binding. J. Am. Chem. Soc. 116, 3943–3948 (1994)CrossRefGoogle Scholar
  21. Ghosh, S.K.: Electronegativity, hardness, and a semiempirical density functional theory of chemical binding. Int. J. Quant. Chem. 49, 239–251 (1994)CrossRefGoogle Scholar
  22. Goldschmidt, V. M., Barth, T., Lunde, G.: Geochemical distribution law of the elements. V. Isomorphy and polymorphy of the sesquioxides. The contraction of the “lanthanums” and its consequences. Skrifter Norske Videnskaps. Akad. Oslo., 1 Mat.-Nat. Kl., 7, 59 pp. (1925). Chem. Abstr. 19, 3391(1925)Google Scholar
  23. Gorbunov, A. I., Filippov, G. G.: Fine Structure of D. I. Mendeleev Periodic Table: secondary periodicity, early and late elements. Khim-ya Tekhnol. 11, 43–45 (2001). (in Russian) Google Scholar
  24. Gurin, V.E.: Element property diagrams of a new form and the phenomenon of secondary periodicity. Zh. Obshch. Khim. 64, 367–370 (1994). (in Russian) Google Scholar
  25. Habashi, F.: Metals: typical and less typical, transition and inner transition. Found. Chem. 12, 31–39 (2010)CrossRefGoogle Scholar
  26. Han, F.: A Modern Course in University Physics, p. 588. World Scientific Publishing Co., Singapore (2017)CrossRefGoogle Scholar
  27. Hart, D.: Periodicity of chemical thermodynamic functions. J. Phys. Colloid Chem. 56, 202–214 (1952)CrossRefGoogle Scholar
  28. Hildebrand, J.H.: The alternations in stability of compounds of the elements of group V. J. Chem. Educ. 18, 291–292 (1941)CrossRefGoogle Scholar
  29. Imyanitov, N.S.: Dialectic functions for description and prediction of proton affinity and basicity in gas phase. Russ. J. Org. Chem. 37, 1196–1204 (2011a)CrossRefGoogle Scholar
  30. Imyanitov, N.S.: Dialectic functions for description and prediction of proton affinity and basicity in gas phase. Russ. J. Org. Chem. 37, 1196–1204 (2011b). (in Russian) CrossRefGoogle Scholar
  31. Imyanitov, N.S.: The periodic law. Formulations, equations, graphic representations. Russ. J. Inorg. Chem. 56, 2183–2200 (2011c)CrossRefGoogle Scholar
  32. Imyanitov, N.S.: Adequacy of the new formulation of the Periodic Law when fundamental variations occur in blocks and periods. Found. Chem. 16, 235–247 (2014)CrossRefGoogle Scholar
  33. Imyanitov, N.S.: Dialectics and synergetics in chemistry. Periodic Table and oscillating Reactions. Found. Chem. 18, 21–56 (2016a)CrossRefGoogle Scholar
  34. Imyanitov, N.S.: Spiral as the fundamental graphic representation of the Periodic Law. Blocks of elements as the autonomic parts of the Periodic System. Found. Chem. 18, 153–173 (2016b)CrossRefGoogle Scholar
  35. Janes, R., Moore, E.A.: Metal-Ligand Bonding. Roy. Soc. Chem. Bath Press, Glasgow (2004)Google Scholar
  36. Jørgensen, C.K.: Energy Levels of Complexes and Gaseous Ions, (Ph.D Thesis, University of Copenhagen), Gjellerups Forlag, Copenhagen (1957)Google Scholar
  37. Jorgensen, K.: Oxidation numbers and oxidation states, p. 49. Springer, London (1969)CrossRefGoogle Scholar
  38. Kablukov, I.A.: Thermochemistry. ONTI, Moskow-Leningrad (1934). (in Russian) Google Scholar
  39. Kaupp, M.: The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 28, 320–325 (2007)CrossRefGoogle Scholar
  40. Kerr, J.A.: Strenghts of Chemical Bonds. In: Linde D.R. (ed-in-chief) CRC Handbook of Chemistry and Physics, 85th ed., pp. 9–52–9–64. CRC Press, Boca Raton etc (2004–2005)Google Scholar
  41. Klemm, W.: Eine Systematik der seltenen Erden, begründet auf periodischen Eigenschaftsänderungen ihrer Ionen. Ztschr. anorg. allgem. Chem. 184, 345–351 (1929)CrossRefGoogle Scholar
  42. Klemm, W., Bommer, A.: Zur Kenntnis der Metalle der seltenen Erden. Ztschr. anorg. allgem. Chem. 231, 138–171 (1937)CrossRefGoogle Scholar
  43. Klemm, W.: Zur Systematik der seltenen Erden. Angew. Chem. 51(575–576), 577–581 (1938)CrossRefGoogle Scholar
  44. Klemm, W., Westlinning, H.: Untersuchungen über die Verbindungen der Magnesiums mit den Elementen der IVb-Gruppe. Ztschr. anorg. allgem. Chem. 245, 365–380 (1941)CrossRefGoogle Scholar
  45. Klemm, W.: Die Bedeutung “halbbesetzter” Elektronenkonfigurationen für die Chemie. Chemiker Ztg. 66, 365–368 (1942)Google Scholar
  46. Korableva, T.P., Korol’kov, D.V.: Theory of the Periodic System. Izd-vo SPbU, St. Petersburg (2005). (in Russian) Google Scholar
  47. Korol’kov, D.V., Skorobogatov, G.A.: Theoretical Chemistry. 2nd ed. p. 84. Izd-vo SPbU, St. Petersburg (2005). (in Russian) Google Scholar
  48. Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team.: NIST Atomic Spectra Database (ver. 5.2), Ground States and Ionization Energies (Online). National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html (2014). Accessed 22 March 2017
  49. Lakatos, B.: Transition metal contraction and double contraction. Naturwissensch 41, 355–356 (1954)CrossRefGoogle Scholar
  50. Lakatos, B.: Periodicity of the chemical thermodynamic properties of compounds. Acta Chim. Acad. Scient. Hung. 8, 207–231 (1955)Google Scholar
  51. Li, Jiping, He, H.: Explanation for secondary periodicity using quantum chemical relativistic effects. Huaxue Yanjiu Yu Yingyong 8, 581–584 (1996). (in Chinese) Google Scholar
  52. Magomedov, M.N.: The correlation of the parameters of interatomic interaction in crystals with the position of atom in the periodic table. High Temp. 46, 484–494 (2008)CrossRefGoogle Scholar
  53. Mazurs’ 1967 Formulation. The Chemogenesis web book, The INTERNET Database of Periodic Tables. Curator: M.R. Leach (1967). http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=298. Accessed 23 Feb 2017
  54. Mazurs, E.G.: Graphic Representations of the Periodic System During One Hundred Years, 2nd edn, p. 127. University of Alabama Press, Ala (1974)Google Scholar
  55. Mel’nikov, V.P., Dmitriev, I.S.: Additional Types of Periodicity in the D. I. Mendeleev’s Periodic System. Nauka, Moscow (1988). (in Russian) Google Scholar
  56. Meyer, R.J.: Die stellung der elemente der seltenen erden im periodischen system. Naturwissensch 2, 781–787 (1914)CrossRefGoogle Scholar
  57. Morozova, M.P., Li Myao-syu, Golomolzina M.V.: The enthalpy of formation of strontium compounds with elements of the main subgroup of the IV group. Vestn. Leningr. Gos. Un-ta 102, 83–86 (1959). (in Russian) Google Scholar
  58. Mosander, C.: On the new metals, lanthanium and didymium, which are associated with cerium, and on erbium and terbium, new metals associated with yttria. Philos. Mag. [3] 23, 241–254 (1843)Google Scholar
  59. Neubert, D.: Double Shell Structure of the Periodic System of the Elements. Z. Naturforsch. 25a, 210–217 (1970)Google Scholar
  60. Noddak W., Brukl, A.: Zur Klemmschen Systematik der seltenen Erden. Angew. Chem. 51, 576–577, 581(1938)Google Scholar
  61. Odabasi, H.: Some evidence about the dynamical group SO(4, 2) symmetries of the periodic table of elements. Int. J. Quant. Chem. Symp. 7, 23–33 (1973)CrossRefGoogle Scholar
  62. Ostrovsky, V.N.: Dynamic symmetry of atomic potential. J. Phys. B. 14, 4425–4439 (1981)CrossRefGoogle Scholar
  63. Panchenko, YuN, Abramenkov, A.V., De, George R., Maré, G.R.: Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, trimethylgermyl, trimethylstannyl and trimethylplumbyl derivatives of 3,3-dimethylcyclopropene. XI. Secondary periodicity. Spectrochim. Acta 73A, 782–786 (2009)CrossRefGoogle Scholar
  64. Drits M.E. (Ed): Properties of elements, Handbook, 3rd edn., vol 1, pp. 21, 23. Ruda i Metally, Moscow (2003)Google Scholar
  65. Pyykkö, P., Desclaux, J.P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979)CrossRefGoogle Scholar
  66. Pyykkö, P.: On the interpretation of ‘secondary periodicity’ in the periodic system. J. Chem. Res. Synopses 11, 380–381 (1979)Google Scholar
  67. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)CrossRefGoogle Scholar
  68. Pyykkö, P.: A note on nodal structures, partial screening, and periodic trends among alkali metals and alkaline earths. Int. J. Quant. Chem. 85, 18–21 (2001)CrossRefGoogle Scholar
  69. Rabinowitsch, E., Thilo, E: Periodisches System. Geschichte und Theorie. S, p. 261. F. Enke, Stuttgart (1930)Google Scholar
  70. Roth, W.A., Becker, G.: Ordnungszahl und bildungswärme. Ztschr. Phys. Chem. A. 159, 1–26 (1932)Google Scholar
  71. Rutherford, E.: Scattering of alpha and beta particles of matter and the structure of the atom. Phil. Mag. 1798–1977(21), 669–689 (1911)CrossRefGoogle Scholar
  72. Sanderson, R.T.: An explanation of chemical variations within periodic major groups. J. Am. Chem. Soc. 74, 4792–4794 (1952a)CrossRefGoogle Scholar
  73. Sanderson, R.T.: Stability of nonpolar covalent bonds. J. Chem. Phys. 20, 535 (1952b)CrossRefGoogle Scholar
  74. Scerri, E.R.: Presenting the left-step periodic table. Edu. Chem. 42, 135–136 (2005a)Google Scholar
  75. Scerri, E.R.: Editorial 21. Found. Chem. 7, 199–202 (2005b)CrossRefGoogle Scholar
  76. Scerri, E.R.: The periodic table: its story and its significance. Oxford University Press, New York (2007)Google Scholar
  77. Scerri, E.R.: A very short introduction to the periodic table. Oxford University Press, Oxford (2011a)CrossRefGoogle Scholar
  78. Scerri, E.R.: A review of research on the history and philosophy of the periodic table. \ Una revisio´n de investigaciones sobre la historia y la filosofı´a de la tabla perio´dica. J. Sci. Educ. 12, 4–7 (2011b)Google Scholar
  79. Scerri, E.: Mendeleev’s periodic table is finally completed and what to do about group 3? Chem. Int. 28–31, July–August (2012)Google Scholar
  80. Scerri, E.R., Parsons, W.: What elements belong in group 3 of the periodic table? In: Scerri E., Restrepo G. (eds.) Mendeleev to oganesson. A multidisciplinary perspective on the periodic table, pp. 140–151. Oxford Univ Press, New York, NY (2018)Google Scholar
  81. Siekierski, S.: Ionic Radii: effect of shell radius, cation charge and lone electron pair. Commun. Inorg. Chem. 19, 121–131 (1997)CrossRefGoogle Scholar
  82. Shchukarev, S.A., Vasil’kova, I.V.: The phenomenon of secondary periodicity on the example of magnesium compounds with elements of the main subgroup of the IV group in the D.I. Mendeleev system. Vestn. Leningr. Gos. Un-ta. 2–1, 115–120 (1953). (in Russian) Google Scholar
  83. Shchukarev, S.A.: The periodic properties of electronic orbits of free atoms, and the relation of such periodicity with the properties of elements, chemical compounds, and solutions of electrolytes. Vestn. Leningr. Gos. Un-ta 11–4, 127–151 (1954a). (in Russian) Google Scholar
  84. Shchukarev, S.A.: D. I. Mendeleev’s periodic law as a basic principle of modern chemistry. Zh. Obshch. Khim. 24, 595–603 (1954b)Google Scholar
  85. Shchukarev, S.A.: D. I. Mendeleev’s periodic law as a basic principle of modern chemistry. Zh. Obshch. Khim. 24, 581–592 (1954c). (in Russian) Google Scholar
  86. Shchukarev, S.A., Morozova, M.P., Prokof’eva, E.A.: Higher barium phosphides. Zh. Obshch. Khim. 24, 1261–1262 (1954a)Google Scholar
  87. Shchukarev, S.A., Morozova, M.P., Prokof’eva, E.A.: Higher barium phosphides. Zh. Obshch. Khim. 24, 1277–1278 (1954b). (in Russian) Google Scholar
  88. Shchukarev, S.A., Grossman, G., Morozova, M.P.: The enthalpy of formation of zinc phosphide, Zn3P2. Zh. Obshch. Khim. 25, 607–608 (1955a)Google Scholar
  89. Shchukarev, S.A., Grossman, G., Morozova, M.P.: The enthalpy of formation of zinc phosphide, Zn3P2. Zh. Obshch. Khim. 25, 633–634 (1955b). (in Russian) Google Scholar
  90. Shchukarev, S.A.: Modern significance of D. I. Mendeleev’s periodic law and prospects for development. In: Semenov, N. N. (ed) Sto Let Period. Zakona Khim. Elem., Dokl. Plenarnykh Zased., Yubileinyi Mendeleev. S’ezd, 10th. pp. 40–53. Nauka, Moscow (1971). (in Russian) Google Scholar
  91. Shchukarev, S.A.: New views of D.I. Mendeleev’s system. I. Periodicity of the stratigraphy of atomic electronic shells in the system, and the concept of kainosymmetry. Zh. Obshch. Khim. 47, 246–259 (1977)Google Scholar
  92. Shishokin, V.P.: Secondary periodicity in the periodic chart of D. I Mendeleev. Zh. Obshch. Khim. 23, 929–933 (1953a)Google Scholar
  93. Shishokin, V.P.: Secondary periodicity in the periodic chart of D. I Mendeleev. Zh. Obshch. Khim. 23, 889–893 (1953b). (in Russian) Google Scholar
  94. Thomsen, J.: Systematishe Durchtfuhrung thermochemischer Untersuchunden. S. 152. 160, 171. F. Enke, Stuttgart (1906)Google Scholar
  95. Thyssen, P., Binnemans, K.: Accommodation of the rare earths in the periodic table: a historical analysis. In: Gschneidner, K. A, Jr. (ed) Handbook on the Physics and Chemistry of Rare Earths 41, 1–93 (2011)Google Scholar
  96. Thyssen, P., Ceulemans, A.: Shattered symmetry: group theory from the eightfold way to the periodic table, pp. 380, 412; tabl. 13.7. Oxford University Press, Oxford (2016)Google Scholar
  97. Trifonov, D.N.: Afterword of the editor. In: Mel’nikov, V.P., Dmitriev, I.S.: Additional types of periodicity in the D. I. Mendeleev’s periodic system. Nauka, Moscow (1988). (in Russian) Google Scholar
  98. Urmantsev, YuA: Poly- and isomorphism in living and inanimate nature. Voprosy Filosofii 12, 77–88 (1968). (in Russian) Google Scholar
  99. Urmantsev, Y.A.: Symmetry of system and system of symmetry. Comp. & Maths with Appls. 12B, Iss. 1/2, 379–405 (1986)Google Scholar
  100. Urmantsev, Y.A.: General theory of systems: state, applications and development prospects. In: Tyukhtin V.S., Urmantsev Yu.A. (eds.) Sistema. Simmetriya. Garmoniya. pp. 38–130. Mysl’, Moscow (1988). (in Russian) Google Scholar
  101. Vyatkin, V.B.: Orbital system of distribution of electrons in atom and structure of periodic system of elements. Nauchnyj Zh. Kubansk. Gos. Agrarn. Un-ta. 89 (05), 1–34 (2013). (in Russian) Google Scholar
  102. Wang, S.-G., Schwarz, W.H.E.: Icon of chemistry: the periodic system of chemical elements in the new century. Angew. Chem. Int. Ed. 48, 3404–3415 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Federal State Unitary Enterprise S.V. Lebedev Research Institute for Synthetic RubberSt. PetersburgRussia

Personalised recommendations