Foundations of Chemistry

, Volume 21, Issue 1, pp 11–29 | Cite as

About continuity and rupture in the history of chemistry: the fourth chemical revolution (1945–1966)

  • José A. ChamizoEmail author


A layered interpretation of the history of chemistry is discussed through chemical revolutions. A chemical revolution (or rupture, discontinuity, transition) mainly by emplacement, instead of replacement, procedures were identified by: a radical reinterpretation of existing thought recognized by contemporaries themselves, which means the appearance of new concepts and the arrival of new theories; the use of new instruments changed the way in which its practitioners looked and worked in the world and through exemplars, new entities were discovered or incorporated; the opening of new subdisciplines, which produced, separated scientific communities. The fourth chemical revolution, fundamentally characterized by the incorporation of new instruments in chemical practices is discussed.


Chemical revolution Emplacement revolution Layered history Exemplars Instruments Chemical entities 



To Hasok Chang, Olimpia Lombardi, and Joachim Schummer for their valuable comments to some isolated parts of the present manuscript. Also to the two referees whose comments contributed to the improvement of the original manuscript.


  1. Agar, J.: Science in the Twentieth Century and Beyond. Polity Press, Cambridge (2012)Google Scholar
  2. Arabatzis, T.: Experimenting on (and with) Hidden Entities: The Inextricability of Representation and Intervention. In: Feest, U., Hon, G., Rheinberger, H.-J., Schickore, J., Steinle, F. (eds.) Generating Experimental Knowledge. Max Plank Institute for the History of Science, Berlin (2008)Google Scholar
  3. Arabatzis, T.: Representing Electrons. A biographical Approach to Theoretical Entities. University of Chicago Press, Chicago (2006)Google Scholar
  4. Bachelard, G.: La Filosofía del No. Ensayo de una filosofía del nuevo espíritu científico. Amorrortu, Buenos Aires (1973)Google Scholar
  5. Baird, D.: Thing Knowledge. A Philosophy of Scientific Instrumentation. University of California Press, Berkeley (2004)Google Scholar
  6. Bensaude-Vincent, B.: Atomism and positivism. A legend about french chemistry. Ann. Sci. 56, 81–94 (1999)CrossRefGoogle Scholar
  7. Bensaude-Vincent, B.: Textbooks on the Map of Science Studies. Sci. Educ. 15, 667–670 (2006)CrossRefGoogle Scholar
  8. Bensaude-Vincent, B.: Plastics, Materials and Dreams of Dematerialization. In: Gabrys, J., Hawkins, G., Michael, M. (eds.) Accumulation: The Material Politics of Plastic. Routledge, London (2013)Google Scholar
  9. Bensaude-Vincent, B., Simon, J.: Chemistry. The Impure Science. Imperial College Press, London (2009)Google Scholar
  10. Bird, A.: Thomas Kuhn. Princeton University, Princeton (2000)Google Scholar
  11. Brandt, S.: The Harvest of a Century. Discoveries of Modern Physiscs in 100 Episodes. Oxford University Press, Oxford (2009)Google Scholar
  12. Blum, A., Gavroglu, K., Joas, C., Renn, J.: Shifting Paradigms: Thomas S. Kuhn and the History of Science. Max Planck Institute for the History of Science, Berlin (2016)Google Scholar
  13. Bourdieu, P.: El oficio de científico. Ciencia de la ciencia y reflexividad. Anagrama, Barcelona (2001)Google Scholar
  14. Chamizo, J.A.: Introducción Experimental a la Historia de la Química. Universidad Nacional Autónoma de México, México (2010)Google Scholar
  15. Chamizo, J.A.: La imagen pública de la química. Educ. Química 22, 320–331 (2011)CrossRefGoogle Scholar
  16. Chamizo, J.A.: About the Chemical Experiment. In: Llored, J.P. (ed.) The Philosophy of Chemistry. Practices Methodologies and Concepts. Cambridge Scholars Publishing, Newcastle (2013)Google Scholar
  17. Chamizo, J.A.: De la paradoja a la metáfora. La enseñanza de la química a partir de sus modelos. Siglo XXI-Facultad de Química-UNAM, México (2014a)Google Scholar
  18. Chamizo, J.A.: The role of instruments in three chemical’ revolutions. Sci. Educ. 23, 955–982 (2014b)CrossRefGoogle Scholar
  19. Chamizo, J.A.: How chemistry teachers, using history of chemistry, could teach chemistry. In: Lavonen, J., et al. (eds.) Science Education Research. Engaging Learners for a Sustainable Future. ESERA, Helsinki (2015)Google Scholar
  20. Chamizo, J.A.: The fifth chemical revolution. Found. Chem. 19, 157–179 (2017a)CrossRefGoogle Scholar
  21. Chamizo, J.A.: La cuarta revolución química (1945-1966). De las sustancias a las especies químicas. Educ. Química 28, 202–210 (2017b)CrossRefGoogle Scholar
  22. Chamizo, J.A.: Química General. Una aproximación histórica. In editorial process. Universidad Nacional Autónoma de México, México (2018)Google Scholar
  23. Chamizo, J.A., Garritz, A.: Historical Teaching of Atomic and Molecular Structure. In: Matthews, M. (ed.) International Handbook of research in History Philosophy and Science Teaching. Springer, Dordrecht (2014)Google Scholar
  24. Chang, H.: Is water H2O? Evidence, Realism and Pluralism. Springer, Dordrecht (2012)CrossRefGoogle Scholar
  25. Chang, H.: The persistence of epistemic objects through scientific change. Erkenntnis 75, 413–429 (2011)CrossRefGoogle Scholar
  26. Cohen, I.B.: Revolution in Science. Harvard University Press, Cambridge (1985)Google Scholar
  27. Córdoba, M., Lombardi, O.: A Kantian Perspective for the Philosophy of Chemistry. In: Llored, J.P. (ed.) The Philosophy of Chemistry. Practices Methodologies and Concepts. Cambridge. Scholars Publishing, Newcastle (2013)Google Scholar
  28. Dyson, F.J.: The Sun, the Genome, the Internet, Tools of Scientific Revolutions. Oxford University Press, New York (1999)Google Scholar
  29. Earley, J.E.: Why there is not salt in the sea. Found. Chem. 7, 85–102 (2005)CrossRefGoogle Scholar
  30. Elwick, J.: Layered history: styles of reasoning as stratified conditions of possibility. Stud. History Philos Sci. 43, 619–627 (2012)CrossRefGoogle Scholar
  31. Friedman, M., Nordmann, A.: The Kantian Legacy in Ninetenth-Century Science. The MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  32. Furukawa, Y.: Macromolecules, Their Structures and Functions. In: Nye, M.J. (ed.) The Cambridge History of Science, Vol. 5: The Modern Physical and Mathematical Sciences. Cambridge University Press, Cambridge (2003)Google Scholar
  33. Galison, P.: Image and Logic. A Material Culture of Microphysics. The University of Chicago, Chicago (1997)CrossRefGoogle Scholar
  34. Garritz, A.: Historia de la Química Cuántica. Educ. Química 25, 170–175 (2014)CrossRefGoogle Scholar
  35. Ghibaudi, E.M., Cerruti, L.: Chemical substance, material, product, good, waste: a changing ontology. Found. Chem. 19, 97–123 (2017)CrossRefGoogle Scholar
  36. Goodman, N.: Ways of Worldmaking. Hackett Publishing Company, Indianapolis (1978)Google Scholar
  37. Grasselli, J.G.: Analytical chemistry-feeding the environmental revolution? Anal. Chem. 64, 677–685 (1992)CrossRefGoogle Scholar
  38. Goodwin, W.: Sustaining a controversy: the non-classical ion debate. Br. J. Philos. Sci. 64, 787–816 (2013)CrossRefGoogle Scholar
  39. Gutting, G.: Paradigms and Revolutions; Applications and Appraisals of Thomas Kuhn’s Philosophy of Science. Notre Dame University Press, Notre Dame (1980)Google Scholar
  40. Gyung Kim, M.: Stabilizing chemical reality: the analitic-synthetic ideal of chemical species. HYLE Int. J. Philos. Chem. 20, 117–139 (2014)Google Scholar
  41. Hacking, I.: Ensayo Preliminar en Kuhn T. La Estructura de las Revoluciones Científicas. Fondo de Cultura Económica, México (2013)Google Scholar
  42. Hager, T.: Force of Nature. The life of Linus Pauling. Simon & Schuster, New York (1995)Google Scholar
  43. Hendry, R.F.: Three Metaphysical Issues in Chemistry. In: Llored, J.P. (ed.) The Philosophy of Chemistry. Practices, Methodologies and Concepts. Cambridge Scholars, Newcastle (2013)Google Scholar
  44. Hendry, R.F.: Reduction, Emergence and Physicalism. In: Woody, A.I., Hendry, R.F., Needham, P. (eds.) Philosophy of Chemistry. Elsevier, Amsterdam (2012)Google Scholar
  45. Hernández-Garcia, Y., Chamizo, J.A., Kleiche-Dray, M., Russell, J.M.: The scientific impact of mexican steroid research 1935–1965: a bibliometric and historiographic analysis. J. Assoc. Inf. Sci. Technol. 67, 1245–1256 (2016)CrossRefGoogle Scholar
  46. Hoffman, R., Torrence, V.: Chemistry imagined: Reflections on the science. Smithsonian Institution Press, Washington (1993)Google Scholar
  47. Holmes, F.L., Levere, T.H. (eds.): Instruments and Experimentation in the History of Chemistry. The MIT Press, Cambridge (2000)Google Scholar
  48. Hoyningen-Huene, P.: Thomas Kuhn and the chemical revolution. Found. Chem. 10, 101–115 (2008)CrossRefGoogle Scholar
  49. Hull, D.L.: Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. The University of Chicago Press, Chicago (1988)CrossRefGoogle Scholar
  50. Humphreys, P.: Computational Science and its Effects. In: Carrier, M., Nordmann, A. (eds.) Science in the Context of Application, Boston Studies in the Philosophy of Science, vol. 274. Springer, Dordrecht (2011)Google Scholar
  51. Husbands, C.: What is History Teaching? Language, Ideas and Meaning in Learning about the Past. Open University Press, Buckingham (2003)Google Scholar
  52. Ihde, A.: The Development of Modern Chemistry. Dover, New York (1984)Google Scholar
  53. Jensen, W.: Logic, history, and the chemistry textbook. I does chemistry have a logical structure? J. Chem. Educ. 75, 679–687 (1998a)CrossRefGoogle Scholar
  54. Jensen, W.: Logic, history, and the chemistry textbook. II Can we unmuddle the chemistry textbook? J. Chem. Educ. 75, 817–828 (1998b)CrossRefGoogle Scholar
  55. Jensen, W.: Logic, history, and the chemistry textbook. III one chemical revolution or three? J. Chem. Educ. 75, 961–969 (1998c)CrossRefGoogle Scholar
  56. Kay, L.: The Molecular Vision of Life: Caltech the Rockefeller Foundation and the Rise of the New Biology. Oxford University Press, Oxford (1993)Google Scholar
  57. Kindi, V., Arabatzis, T.: Kuhn’s The Structure of Scientific Revolutions Revisited. Routledge, New York (2012)Google Scholar
  58. Klein, U.: Objects of inquiry in classical chemistry: material substances. Found. Chem. 14, 7–23 (2012)CrossRefGoogle Scholar
  59. Koselleck, R.: Future Past: On the Semantics of Historical Time. Columbia University Press, New York (2004)Google Scholar
  60. Kuhn, T.: The Trouble with the Historical Philosophy of Science. Robert and Maurine Rothschild Distinguished Lecture, An Occasional Publication of the Department of History. Harvard University, Cambridge (1992)Google Scholar
  61. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (1962)Google Scholar
  62. Lakatos, I., Musgrave, A. (eds.): Criticism and the Growth of Knowledge. Cambridge University Press, Cambridge (1970)Google Scholar
  63. Laudan, R.: The Nature of Technological Knowledge. Are Models of Scientific Change Relevant?. Springer, Dordrecht (1984)CrossRefGoogle Scholar
  64. Lazlo, P.: Towards teaching chemistry as a language. Sci. Educ. 22, 1669–1706 (2013)CrossRefGoogle Scholar
  65. Lazlo, P.: On the Self-Image of Chemists. HYLE Int. J. Philos. Chem. 12, 99–130 (2006)Google Scholar
  66. Linnett, J.W.: A modification of the Lewis-Langmuir octet rule. J. Am. Chem. Soc. 83, 2643–2653 (1961)CrossRefGoogle Scholar
  67. Lombardi, O.: The Ontological Autonomy of the Chemical World: Facing the Criticisms. In: Scerri, E., McIntyre, L. (eds.) Philosophy of Chemistry, Boston Studies in the Philosophy and History of Science 306. Springer, Dordrecht (2015)Google Scholar
  68. Lombardi, O. y Pérez Ransanz A.R.: Los múltiples mundos de la ciencia. Un realismo pluralista y su aplicación a la filosofía de la física. UNAM-Siglo XXI, México (2012)Google Scholar
  69. Mallar, G., Paradeise, C., Peerbaye, A. (eds.): Global Science and National Sovereignty: Studies in Historical Sociology of Science. Routledge, New York (2009)Google Scholar
  70. Marcum, J.A.: Thomas Kuhn’s Revolutions. A Historical and an Evolutionary Philosophy of Science. Bloomsbury, London (2015)Google Scholar
  71. Matthews, M.R. (ed.): International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht (2014)Google Scholar
  72. Meikle, J.L.: American Plastic: A cultural history. Rutgers University Press, New Brunswick (1997)Google Scholar
  73. Morris, P.J.T. (ed.): From Classical to Modern Chemistry. The Instrumental Revolution. Royal Society of Chemistry-Science Museum, London (2002)Google Scholar
  74. Morrison, M.: History and Metaphysics: On the Reality of Spin. In: Butchwald, J.Z., Warwick, A. (eds.) Histories of the Electron. The MIT Press, Cambridge (2004)Google Scholar
  75. Mullins, N.C.: The development of a Scientific Speciality: the Phage Group and the origins of Molecular Biology. Minerva 10, 51–82 (1972)CrossRefGoogle Scholar
  76. Needham, P.: Substance and Time. Br. J. Philos. Sci. 61, 485–512 (2010)CrossRefGoogle Scholar
  77. Prelog, V.: My 132 Semesters of Chemistry Studies: studium chymiae nec nisi cum morte finitur. American Chemical Society, Washington, DC (1991)Google Scholar
  78. Reinhardt, C.: Shifting and Rearranging. Physical Methods and the Transformation of Modern Chemistry. Science History Publications, Sagamore Beach (2006a)Google Scholar
  79. Reinhardt, C.: A leader user of instruments in science. John D. Roberts and the adaptation of nuclear magnetic resonance to organic chemistry, 1955–1975. Isis 97, 205–236 (2006b)CrossRefGoogle Scholar
  80. Reinhardt, C. (ed.): Chemical Sciences in the 20th Century. Bridging Boundaries. Wiley-VCH, Weinheim (2001)Google Scholar
  81. Rouse, J.: Kuhn and scientific practices. Division I Faculty Publication. Paper 17. (1998)
  82. Ruthenburg, K., van Brakel, J. (eds.): Stuff. The Nature of Chemical Substances. Königshausen & Newmann, Würzburg (2008)Google Scholar
  83. Scerri, E.: A Tale of Seven Scientists and a New Philosophy of Science. Oxford University Press, Oxford (2016)Google Scholar
  84. Schummer, J.: The Impact of Instrumentation on Chemical Species Identity From Chemical Substances to Molecular Species. In: Morris, P.J.T. (ed.) From Classical to Modern Chemistry. The Instrumental Revolution. Royal Society of Chemistry-Science Museum, London (2002)Google Scholar
  85. Schweber, S.S.: On Kuhnian and Hacking-Type Revolutions. In: Blum, A., Gavroglu, K., Joas, C., Renn, J. (eds.) Shifting Paradigms: Thomas S. Kuhn and the History of Science. Max Planck Institute for the History of Science, Berlin (2016)Google Scholar
  86. Spangenburg, R., Moser, D.K.: The age of Synthesis 1800-1895. Facts on File, New York (2004)Google Scholar
  87. Suppe, F. (ed.): The Structure of Scientific Theories. The University of Illinois Press, Urbana (1979)Google Scholar
  88. Talanquer, V.: School chemistry: the need for transgresion. Sci. Educ. 22, 1757–1773 (2013)CrossRefGoogle Scholar
  89. Talanquer, V.: Química Agazapada, en Chamizo J.A. (coord.) Historia y Filosofía de la Química, UNAM-SigloXXI, México (2010)Google Scholar
  90. Taub, L.: On scientific instruments. Stud. Hist. Philos. Sci. 40, 337–343 (2009)CrossRefGoogle Scholar
  91. Toulmin, S.: Human Understanding. Princeton University Press, Princeton (1972)Google Scholar
  92. Tsuneda, T.: Density Functional Theory in Quantum Chemistry. Springer, Tokyo (2014)CrossRefGoogle Scholar
  93. Van Berkel, B., de Vos Veronk, W., Pilot, A.: Normal science education and its dangers: the case of school chemistry. Sci. Educ. 9, 123–159 (2000)CrossRefGoogle Scholar
  94. Wandersee, J.H., Griffard, P.B.: The History of Chemistry: Potential and Actual Contributions to Chemical Education. In: Gilbert, J.K., De Jong, O., Justi, R., Treagust, D.F., Van Driel, J.H. (eds.) Chemical Education: Towards Research- Based Practice. Kluwer, Dordrecht (2002)Google Scholar
  95. Wise, M.N.: Crisis. Hist. Stud. Nat. Sci. 42, 576–580 (2012)CrossRefGoogle Scholar
  96. Woodward, R.B.: The total synthesis of vitamin B12. Pure Appl. Chem. 33, 145–177 (1972)CrossRefGoogle Scholar
  97. Woody, A.I.: On explanatory Practice and Disciplinary Identity. In: Earley Sr., J.E. (ed.) Chemical Explanation: Characteristics, Development, Autonomy, Annals of the New York Academy of Sciences, vol. 988. New York Academy of Sciences, New York (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de QuimicaUniversidad Nacional Autonoma de MexicoMexico CityMexico

Personalised recommendations