A new chapter in the problem of the reduction of chemistry to physics: the Quantum Theory of Atoms in Molecules

  • Jesus Alberto Jaimes Arriaga
  • Sebastian FortinEmail author
  • Olimpia Lombardi


The problem of the reduction of chemistry to physics has been traditionally addressed in terms of classical structural chemistry and standard quantum mechanics. In this work, we will study the problem from the perspective of the Quantum Theory of Atoms in Molecules (QTAIM), proposed by Richard Bader in the nineties. The purpose of this article is to unveil the role of QTAIM in the inter-theoretical relations between chemistry and physics. We argue that, although the QTAIM solves two relevant obstacles to reduction by providing a rigorous definition of chemical bond and of atoms in a molecule, it appeals to concepts that are unacceptable in the quantum–mechanical context. Therefore, the QTAIM fails to provide the desired reduction. On the other hand, we will show that the QTAIM is more similar to Bohmian mechanics and that the basic elements of both theories are closely related.


Reductionism Quantum Chemistry Interpretation of Quantum Mechanics Quantum Theory of Atoms in Molecules Bohmian mechanics 



This publication was made possible through the support of Grant 57919 from the John Templeton Foundation, and Grant PICT-2812 of the Agencia Nacional de Promoción Cientítica y Tecnológica of Argentina.


  1. Bader, R.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)Google Scholar
  2. Bader, R.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991)CrossRefGoogle Scholar
  3. Bader, R.: Everyman’s derivation of the theory of atoms in molecules. J. Phys. Chem. A 111, 7966–7972 (2007)CrossRefGoogle Scholar
  4. Bader, R.: Bond paths are not chemical bonds. J. Phys. Chem. A 113, 10391–10396 (2009)CrossRefGoogle Scholar
  5. Bader, R.: The density in density functional theory. J. Mol. Struct. 943, 2–18 (2010)CrossRefGoogle Scholar
  6. Bader, R.: On the non-existence of parallel universes in chemistry. Found. Chem. 13, 11–37 (2011)CrossRefGoogle Scholar
  7. Ballentine, L.: Quantum Mechanics: A Modern Approach. World Scientific Publishing Company, Singapore (1998)CrossRefGoogle Scholar
  8. Bricmont, J.: Making Sense of Quantum Mechanics. Springer, Dordrecht (2016)CrossRefGoogle Scholar
  9. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166–179 (1952a)CrossRefGoogle Scholar
  10. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. II. Phys. Rev. 85, 180–193 (1952b)CrossRefGoogle Scholar
  11. Bub, J.: Interpreting the Quantum World. University Press, Cambridge (1997)Google Scholar
  12. Domenech, G., Holik, F., Krause, D.: Q-spaces and the foundations of quantum mechanics. Found. Phys. 38, 969–994 (2008)CrossRefGoogle Scholar
  13. Domenech, G., Holik, F., Kniznik, L., Krause, D.: No labeling quantum mechanics of indiscernible particles. Int. J. Theor. Phys. 49, 3085–3091 (2010)CrossRefGoogle Scholar
  14. French, S., Krause, D.: Identity in Physics: A Historical, Philosophical and Formal Analysis. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  15. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics, 3rd edn. Addison Wesley, San Francisco (2002)Google Scholar
  16. Heitler, W., London, F.: Interaction between neutral atoms and homopolar binding according to quantum mechanics. Z. Phys. 44, 455–472 (1927)CrossRefGoogle Scholar
  17. Holland, P.: Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  18. Matta, C.F.: Special issue: philosophical aspects and implications of the quantum theory of atoms in molecules (QTAIM). Found. Chem. 15, 245–251 (2013)CrossRefGoogle Scholar
  19. Matta, C.F., Massa, L., Keith, T.A.: Richard F. W. Bader: a true Pioneer. J. Phys. Chem. A 115, 12427–12431 (2011)CrossRefGoogle Scholar
  20. Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)CrossRefGoogle Scholar
  21. Schrödinger, E.: Quatisierung als Eigenwertproblem (Erste mitteilung). Ann. Phys. 79, 361–376 (1926a)CrossRefGoogle Scholar
  22. Schrödinger, E.: Quatisierung als Eigenwertproblem (Vierte mitteilung). Ann. Phys. 81, 437–490 (1926b)CrossRefGoogle Scholar
  23. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926c)CrossRefGoogle Scholar
  24. Slater, J.C.: The virial and molecular structure. J. Chem. Phys. 1, 687–691 (1933)CrossRefGoogle Scholar
  25. Tumulka, R.: Understanding Bohmian mechanics: a dialogue. Am. J. Phys. 72, 1220–1226 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jesus Alberto Jaimes Arriaga
    • 1
  • Sebastian Fortin
    • 2
    Email author
  • Olimpia Lombardi
    • 1
  1. 1.CONICET – Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICET – FCENUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations