Émile Meyerson and mass conservation in chemical reactions: a priori expectations versus experimental tests

  • Roberto de Andrade MartinsEmail author


In his celebrated historic-epistemological work Identité et réalité, Émile Meyerson claimed that the scientific conservation principles were first suggested and accepted for philosophical reasons, and only afterwards were submitted to experimental tests. One of the instances he discussed in his book is the principle of mass conservation in chemical reactions. Meyerson pointed out that several authors, from Antiquity to Kant, accepted the idea of quantitative conservation of matter; and Lavoisier himself was strongly influenced by a priori ideas, using this principle instead of attempting to test it. This paper will review Meyerson’s claim and historic evidence, focusing especially the late nineteenth and early twentieth century, when the principle of mass conservation was tested in highly accurate experiments. Instead of confirming the principle, some of those experiments led to the detection of anomalies. Hans Landolt, for instance, noticed that there were some small violations of the principle. He observed mass variations of about 10−6 in chemical reactions produced in hermetically sealed glass tubes. Since Landolt was a famous chemist, his results produced a strong response. Several researchers repeated his experiments, with different results. Landolt himself improved his experiments, with a balance that could detect mass changes of 10−7. After changes of the experimental procedure, the chemical reactions did not show significant mass changes. There was not, however, any “crucial experiment” “proving” that mass was conserved. The observed anomalies were set aside mainly by theoretical reasons, after the discovery of radioactivity and the development of the theory of relativity.


Émile Meyerson Mass conservation Hans Landolt A priori principles Experimental tests Prout’s hypothesis 



The author is grateful for support received from the Brazilian National Council of Scientific and Technological Development (CNPq).


  1. Bensaude-Vincent, B.: Chemistry in the French tradition of philosophy of science: Duhem, Meyerson, Metzger and Bachelard. Stud. Hist. Philos. Sci. Part A 36(4), 627–649 (2005)CrossRefGoogle Scholar
  2. Bensaude-Vincent, B.: Meyerson: Critique ou héritier de Comte? Dialogue Can. Philos. Rev. Rev. Can. Philos. 47(1), 3–23 (2008)Google Scholar
  3. Blumberg, A.E.: Émile Meyerson’s critique of positivism. Monist 42(1), 60–79 (1932)CrossRefGoogle Scholar
  4. Brenner, A.: Le statut de l’épistémologie selon Meyerson. Arch. Philos. 70(3), 375–384 (2007)CrossRefGoogle Scholar
  5. Brock, W.H.: Dalton versus Prout, the problem of Prout’s hypotheses. In: Cardwell, D.S.L. (ed.) John Dalton and the Progress of Science, pp. 240–258. Manchester University Press, Manchester (1968)Google Scholar
  6. Brock, W.H.: Studies in the history of Prout’s hypotheses. Ann. Sci. 25(1), 49–80; (2), 127–137 (1969)Google Scholar
  7. Bryson, K.A.: The metaphysics of Émile Meyerson, a key to the epistemological paradox. Thomist Specul. Q. Rev. 37(1), 119–132 (1973)CrossRefGoogle Scholar
  8. Buchwald, J.Z., Warwick, A. (eds.): Histories of the Electron, the Birth of Microphysics. MIT Press, Harvard (2004)Google Scholar
  9. Cerruti, L.: Atomi, elementi chimici, etere ponderabile, modelli ed esperimenti di fine ottocento. In: Tucci, P. (ed.). Atti del XVI Congresso Nazionale di Storia della Fisica e dell’Astronomia. Centro di Cultura Scientifica Alessandro Volta, Como (1996). Accessed 10 Nov 2017
  10. Clarke, H.T.: Obituary notices. Hans Heinrich Landolt. J. Chem. Soc. 99(2), 1653–1660 (1911)Google Scholar
  11. Drouin, M.-J.: Causalité et identité chez Meyerson. Laval Théologique et Philosophique 20(1), 74–105 (1964)CrossRefGoogle Scholar
  12. Farrar, W.V.: Nineteenth-century speculations on the complexity of the chemical elements. Br. J. Hist. Sci. 2(4), 297–323 (1965)CrossRefGoogle Scholar
  13. Follon, J.: Réflexions sur la théorie aristotélicienne des quatre causes. Revue Philosophique de Louvain 86(71), 317–353 (1988)CrossRefGoogle Scholar
  14. Fruteau de Laclos, F.: L’Épistémologie d’Emile Meyerson, une Anthropologie de la Connaissance. Vrin, Paris (2009)Google Scholar
  15. Hamerla, R.R.: Edward Williams Morley and the atomic weight of oxygen, the death of Prout’s hypothesis revisited. Ann. Sci. 60, 351–372 (2003)CrossRefGoogle Scholar
  16. Heydweiller, A.: Über Gewichtsänderungen bei chemischer und physikalischer Umsetzung. Annalen der Physik 4(5), 394–420 (1901)CrossRefGoogle Scholar
  17. Heydweiller, A.: Zeitliche Gewichtsänderungen radioaktiver Substanz. Physikalische Zeitschriften 4, 81–82 (1902)Google Scholar
  18. Kragh, H.: Julius Thomsen and 19th-century speculations on the complexity of atoms. Ann. Sci. 39, 37–60 (1982)CrossRefGoogle Scholar
  19. Kragh, H.: The aether in late nineteenth century chemistry. Ambix 36(2), 49–65 (1989)CrossRefGoogle Scholar
  20. Landolt, H.H.: Untersuchen über etwaige Änderungen des Gesamtgewichtes chemisch sich umsetzender Körper. Sitzungsberichte der königl preussische Akademie der Wissenschaften zu Berlin 1, 301–334 (1893)Google Scholar
  21. Landolt, H.H.: Untersuchungen über die fraglichen Änderungen des Gesamtgewichtes chemisch sich umsetzender Körper. Zweite Mitteilung. Sitzungsberichte der königl preussische Akademie der Wissenschaften zu Berlin, vol. 14, pp. 266–298 (1906)Google Scholar
  22. Landolt, H.H.: Untersuchungen über die fraglichen Änderungen des Gesamtgewichtes chemisch sich umsetzender Körper. Dritte Mitteilung. Sitzungsberichte der königl Preussische Akademie der Wissenschaften zu Berlin, vol. 16, pp. 354–387 (1908)Google Scholar
  23. Landolt, H.H.: Über die Durchlässigkeit des Glases für Dämpfe. Z. Phys. Chem. 68, 169–174 (1909)Google Scholar
  24. Landolt, H.H.: Über die Erhaltung der Masse bei chemischen Umsetzungen. Abhandlungen der königlich preussische Akademie der Wissenschaften zu Berlin. Physikalische-mathematische Classe, Abhandlung 1, 1–158 (1910)Google Scholar
  25. Larder, D.F.: Prout’s hypothesis, a reconsideration. Centaurus 15(1), 44–50 (1970)CrossRefGoogle Scholar
  26. Laue, M.V.: Inertia and energy. In: Schilpp, P.A. (ed.) Albert Einstein, Philosopher-Scientist, vol. 2, pp. 503–533. Harper and Brothers, New York (1959)Google Scholar
  27. Lieben, R.V.: Zur Frage nach dem Gewichte der Elektrons. Physikalische Zeitschrift 1, 237–238 (1900)Google Scholar
  28. Lo Surdo, A.: Sulle pretese variazioni di peso in alcune reazioni chimiche. Nuovo Cimento 5(8), 45–67 (1904)CrossRefGoogle Scholar
  29. Lodge, O.J.: The discovery of radioactivity and its influence on the course of physical science. J. Chem. Soc. 101, 2005–2031 (1912)CrossRefGoogle Scholar
  30. Martinelli, G.: Le reazioni con presunta variazione di peso sono accompagnate da fenomeni di radioattività? Rendiconti delle Sedute della Reale Accademia dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali 13, 217–220 (1904)Google Scholar
  31. Martins, R.A.: Os experimentos de Landolt sobre a conservação da massa. Quim. Nova 16(5), 481–490 (1993)Google Scholar
  32. Meyerson, É.: Identité et Réalité. Félix Alcan, Paris (1908)Google Scholar
  33. Meyerson, É.: Identity and Reality. Translated by K. Loewenberg. George Allen & Unwin, London (1930)Google Scholar
  34. Meyerson, É.: Explanation in the Sciences. Translated by M.-A. Sipfle and D.A. Sipfle. Springer, Dordrecht (1991)CrossRefGoogle Scholar
  35. Mills, M.A.: Explicating Meyerson, the critique of positivism and historical épistémologie. HOPOS J. Int. Soc. Hist. Philos. Sci. 5(2), 318–347 (2015)CrossRefGoogle Scholar
  36. Nägeli, C.W.V.: Mechanisch-physiologische Theorie der Abstammungslehre. Mit einem Anhang, 1. Die Schranken der naturwissenschaftlichen Erkenntniss, 2. Kräfte und Gestaltungen im molecularen Gebiet. München, Oldenbourg, München (1884)CrossRefGoogle Scholar
  37. Planck, M.: Zur Dynamik bewegter Systeme. Ann. Phys. 26, 1–34 (1907)Google Scholar
  38. Prout, W.: On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms. Ann. Philos. 6, 321–330 (1815)Google Scholar
  39. Prout, W.: Correction of a mistake in the essay on the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms. Ann. Philos. 7, 111–113 (1816)Google Scholar
  40. Robotti, N., Pastorino, F.: Zeeman’s discovery and the mass of the electron. Ann. Sci. 55(2), 161–183 (1998)CrossRefGoogle Scholar
  41. Romer, A. (ed.): The Discovery of Radioactivity and Transmutation. Dover Publications, New York (1964)Google Scholar
  42. Sanford, F., Ray, L.E.: On a possible change of weight in chemical reactions. Phys. Rev. 5, 247–253; 7, 236–238 (1897–1898)Google Scholar
  43. Smith, J.R.: Persistence and Periodicity: A Study of Mendeleev’s Contribution to the Foundations of Chemistry. Ph.D. Dissertation. London, University of London (1976)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Fundação Municipal de Ensino Superior de Bragança Paulista (FESB), Grupo de História, Teoria e Ensino de Ciências (GHTC-USP)Universidade Federal de São Paulo (UNIFESP)ExtremaBrazil

Personalised recommendations