Advertisement

The problem of optical isomerism and the interpretation of quantum mechanics

  • Juan Camilo Martínez GonzálezEmail author
Article
  • 44 Downloads

Abstract

When young Kant meditated upon the distinction between his right and left hands, he could not foresee that the problem of incongruent counterparts would revive in the twentieth century under a new form. In the early days of quantum chemistry, Friedrich Hund developed the so-called Hund paradox that arises from the supposed inability of quantum mechanics to account for the difference between enantiomers. In this paper, the paradox is expressed as a case of quantum measurement, stressing that decoherence does not offer a way out of the problem. The main purpose is to argue for the need to adopt a clear interpretation of quantum mechanics in order to solve the paradox. In particular, I claim that the Modal-Hamiltonian Interpretation, which conceives measurement as a breaking-symmetry process, supplies the tools required to explain the dextro-rotation or levo-rotation properties of optical isomers.

Keywords

Hund paradox Quantum measurement Enantiomers Contextuality Decoherence Modal interpretation 

Notes

References

  1. Adler, S.: Why decoherence has not solved the measurement problem: A response to P. W. Anderson. Stud. Hist. Philos. Mod. Phys. 34, 135–142 (2003)CrossRefGoogle Scholar
  2. Albert, D., Loewer, B.: Wanted dead or alive: two attempts to solve the Schrödinger’s paradox. In: Fine, A., Forbes, M., Wessels, L. (eds.), Proceedings of the PSA 1990, vol. 1. Philosophy of Science Association, East Lansing (1990)Google Scholar
  3. Albert, D., Loewer, B.: Some alleged solutions to the measurement problem. Synthese 88, 87–98 (1991)CrossRefGoogle Scholar
  4. Albert, D., Loewer, B.: Non-ideal measurements. Found. Phys. Lett. 6, 297–305 (1993)CrossRefGoogle Scholar
  5. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)CrossRefGoogle Scholar
  6. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Modal-Hamiltonian interpretation of quantum mechanics and Casimir operators: the road to quantum field theory. Int. J. Theor. Phys. 50, 774–791 (2011)CrossRefGoogle Scholar
  7. Ardenghi, J.S., Lombardi, O., Narvaja, M.: Modal interpretations and consecutive measurements. In: Karakostas, V., Dieks, D. (eds.) EPSA 2011: perspectives and foundational problems in philosophy of science. Springer, Dordrecht (2013)Google Scholar
  8. Atkins, P., de Paula, J.: Physical Chemistry. Oxford University Press, Oxford (2010)Google Scholar
  9. Bacciagaluppi, G.: A Kochen-Specker theorem in the modal interpretation of quantum mechanics. Int. J. Theor. Phys. 34, 1205–1216 (1995)CrossRefGoogle Scholar
  10. Bacciagaluppi, G., Dickson, M.: Dynamics for modal interpretations. Found. Phys. 29, 1165–1201 (1999)CrossRefGoogle Scholar
  11. Bacciagaluppi, G., Hemmo, M.: Modal interpretations, decoherence and measurements. Stud. Hist. Philos. Mod. Phys. 27, 239–277 (1996)CrossRefGoogle Scholar
  12. Bader, R.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1994)Google Scholar
  13. Bene, G., Dieks, D.: A perspectival version of the modal interpretation of quantum mechanics and the origin of macroscopic behavior. Found. Phys. 32, 645–671 (2002)CrossRefGoogle Scholar
  14. Berlin, Y., Alexander, B., Vitalii, G.: The Hund paradox and stabilization of molecular chiral states. Z. Phys. D 37, 333–339 (1996)CrossRefGoogle Scholar
  15. Brown, H., Suarez, M., Bacciagaluppi, G.: Are ‘sharp values’ of observables always objective elements of reality? In: Dieks, D., Vermaas, P.E. (eds.) The Modal Interpretation of Quantum Mechanics. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  16. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)Google Scholar
  17. Crull, E.: Less interpretation and more decoherence in quantum gravity and inflationary cosmology. Found. Phys. 45, 1019–1045 (2015)CrossRefGoogle Scholar
  18. Dieks, D.: The formalism of quantum theory: an objective description of reality? Ann. Phys. 7, 174–190 (1988)CrossRefGoogle Scholar
  19. Dirac, P.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714–733 (1929)CrossRefGoogle Scholar
  20. Elby, A.: Why ‘modal’ interpretations of quantum mechanics don’t solve the measurement problem. Found. Phys. Lett. 6, 5–19 (1993)CrossRefGoogle Scholar
  21. Fortin, S., Lombardi, O., Martínez González, J.C.: Isomerism and decoherence. Found. Chem. 18, 225–240 (2016)CrossRefGoogle Scholar
  22. Fortin, S., Lombardi, O., Martínez González, J. C.: A new application of the modal-Hamiltonian interpretation of quantum mechanics: the problem of optical isomerism. Stud. Hist. Philos. Mod. Phys. B. 62, 123–135 (2018)CrossRefGoogle Scholar
  23. Gavroglu, K., Simões, A.: Neither Physics nor Chemistry: A History of Quantum Chemistry. MIT Press, Cambridge (2012)Google Scholar
  24. Harris, R., Stodolsky, L.: Time dependence of optical activity. J. Chem. Phys. 74, 2145–2155 (1981)CrossRefGoogle Scholar
  25. Heisenberg, W.: The Physical Principles of the Quantum Theory. University of Chicago Press, Chicago (1930)Google Scholar
  26. Hendry, R.: The physicists, the chemists, and the pragmatics of explanation. Philos. Sci. 71, 1048–1059 (2004)CrossRefGoogle Scholar
  27. Hendry, R.: Two conceptions of the chemical bond. Philos. Sci. 75, 909–920 (2008)CrossRefGoogle Scholar
  28. Hendry, R.: Ontological reduction and molecular structure. Stud. Hist. Philos. Mod. Phys. 41, 183–191 (2010)CrossRefGoogle Scholar
  29. Hendry, R.: The chemical bond. In: Woody, A., Hendry, R., Needham, P. (eds.) Handbook of the Philosophy of Science Volume 6: Philosophy of Chemistry. Elsevier, Amsterdam (2012)Google Scholar
  30. Hendry, R.: The Metaphysics of Chemistry. Oxford University Press, Oxford (2018, forthcoming)Google Scholar
  31. Hettema, H.: Explanation and theory foundation in quantum chemistry. Found. Chem. 11, 145–174 (2009)CrossRefGoogle Scholar
  32. Hettema, H.: Reducing Chemistry to Physics. Limits, Models, Consecuences. University of Groningen, Groningen (2012)Google Scholar
  33. Hund, F.: Zur Deutung der Molekelspektren. III. Z. Phys. 43, 805–826 (1927)CrossRefGoogle Scholar
  34. Joos, E.: Decoherence through interaction with the environment. In: Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.-O. (eds.) Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Heidelberg (1996)Google Scholar
  35. Kochen, S.: A new interpretation of quantum mechanics. In: Mittelstaedt, P., Lahti, P. (eds.) Symposium on the Foundations of Modern Physics 1985. World Scientific, Singapore (1985)Google Scholar
  36. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)Google Scholar
  37. Labarca, M., Lombardi, O.: Why orbitals do not exist? Found. Chem. 12, 149–157 (2010)CrossRefGoogle Scholar
  38. Leach, M.: Concerning electronegativity as a basic elemental property and why the periodic table is usually represented in its medium form. Found. Chem. 15, 13–29 (2013)CrossRefGoogle Scholar
  39. Llored, J.: Mereology and quantum chemistry: the approximation of molecular orbital. Found. Chem. 12, 203–221 (2010)CrossRefGoogle Scholar
  40. Lombardi, O.: Linking chemistry with physics: arguments and counterarguments. Found. Chem. 16, 181–192 (2014)CrossRefGoogle Scholar
  41. Lombardi, O., Castagnino, M.: A Modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)CrossRefGoogle Scholar
  42. Lombardi, O., Castagnino, M.: Matters are not so clear on the physical side. Found. Chem. 12, 159–166 (2010)CrossRefGoogle Scholar
  43. Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2017). https://plato.stanford.edu/archives/spr2017/entries/qm-modal/
  44. Lombardi, O., Castagnino, M., Ardenghi, J.S.: The Modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 41, 93–103 (2010)CrossRefGoogle Scholar
  45. Lombardi, O., Fortin, S., López, C.: Measurement, interpretation and information. Entropy 17, 7310–7330 (2015)CrossRefGoogle Scholar
  46. Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)CrossRefGoogle Scholar
  47. Quack, M., Stohner, J.: Parity violation in chiral molecules. Chimia 59, 530–538 (2005)CrossRefGoogle Scholar
  48. Ruetsche, L.: Measurement error and the Albert-Loewer problem. Found. Phys. Lett. 8, 327–344 (1995)CrossRefGoogle Scholar
  49. Ruthenberg, K., Martínez González, J.C.: Electronegativity and its multiple faces: persistence and measurement. Found. Chem. 19, 1–15 (2017)CrossRefGoogle Scholar
  50. Scerri, E.: Editorial 37. Found. Chem. 13, 1–7 (2011)CrossRefGoogle Scholar
  51. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)Google Scholar
  52. Shao, J., Hänggi, P.: Control of molecular chirality. J. Chem. Phys. 107, 9935–9941 (1997)CrossRefGoogle Scholar
  53. Sutcliffe, B., Woolley, G.: A comment on editorial 37. Found. Chem. 13, 93–95 (2011)CrossRefGoogle Scholar
  54. Sutcliffe, B., Woolley, G.: Atoms and molecules in classical chemistry and quantum mechanics. In: Woody, A., Hendry, R., Needham, P. (eds.) Handbook of the Philosophy of Science Volume 6: Philosophy of Chemistry. Elsevier, Amsterdam (2012)Google Scholar
  55. Van Fraassen, B.C.: A formal approach to the philosophy of science. In: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain. University of Pittsburgh Press, Pittsburgh (1972)Google Scholar
  56. Van Fraassen, B.C.: The Einstein-Podolsky-Rosen paradox. Synthese 29, 291–309 (1974)CrossRefGoogle Scholar
  57. Vassallo, A., Esfeld, M.: On the importance of interpretation in quantum pysics: a reply to Elise Crull. Found. Phys. 45, 1533–1536 (2015)CrossRefGoogle Scholar
  58. Vemulapalli, K.: Theories of the chemical bond and its true nature. Found. Chem. 10, 167–176 (2008)CrossRefGoogle Scholar
  59. Vermaas, P.: A no-go theorem for joint property ascriptions in modal interpretations of quantum mechanics. Phys. Rev. Lett. 78, 2033–2037 (1997)CrossRefGoogle Scholar
  60. Vermaas, P., Dieks, D.: The modal interpretation of quantum mechanics and its generalization to density operators. Found. Phys. 25, 145–158 (1995)CrossRefGoogle Scholar
  61. Wolley, G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)CrossRefGoogle Scholar
  62. Wolley, G.: Natural optical activity and the molecular hypothesis. Struct. Bond. 52, 1–35 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas – CONICETBuenos AiresArgentina

Personalised recommendations