Advertisement

Re-evaluating semi-empirical computer simulations in quantum chemistry

  • María Silvia PolzellaEmail author
  • Penélope LodeyroEmail author
Article
  • 33 Downloads

Abstract

Usually within the context of computer simulations in quantum chemistry practices (and solid-state physics), there is a distinction between ab initio and semi-empirical methods. Related to this, a controversy within the scientific and philosophical communities came about regarding the superiority of the ab initio methods due to their theoretical rigor. In this article we re-evaluate the condition of the semi-empirical simulations in this area of research. We examine some of the aspects of this debate that have been considered in philosophy and provide additional elements to the analysis.

Keywords

Computer simulations Quantum chemistry Semi-empirical Ab initio Scientific practices 

Notes

Acknowledgements

We would like to thank Professor Victor Rodríguez who provided insight and expertise that greatly assisted the research. In other respect, this research was supported in part by the Fund for Scientific and Technological Research (FONCYT) PICT-2016-1524.

References

  1. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098–3100 (1988)CrossRefGoogle Scholar
  2. Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)CrossRefGoogle Scholar
  3. Becke, A.D.: Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104(3), 1040–1046 (1996)CrossRefGoogle Scholar
  4. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)CrossRefGoogle Scholar
  5. Cartwright, N.: Quantum Hamiltonians and the BCS model of superconductivity. In: Morgan, M.S., Morrison, M. (eds.) Models as Mediators: Perspectives on Natural and Social Science, pp. 241–281. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  6. Daniels, A.D., Millam, J.M., Scuseria, G.E.: Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms. J. Chem. Phys. 107(2), 425–431 (1997)CrossRefGoogle Scholar
  7. DePrince III, A.E., Hammond, J.R., Sherrill, C.D.: (2016) Iterative coupled-cluster methods on graphics processing units. In: Walker, R.C., Götz, A.W. (eds.) Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics, pp. 279–280. Wiley, Chichester (2016)CrossRefGoogle Scholar
  8. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)CrossRefGoogle Scholar
  9. Dirac, P.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714–733 (1929)CrossRefGoogle Scholar
  10. Fortin, S., Martinez Gonzalez, J.C.: La relación entre química y física: isomerismo óptico y la paradoja de Hund. Revista colombiana de filosofía 13, 199–224 (2013)Google Scholar
  11. Freed, K.F.: Building a bridge between ab initio and semiempirical theories of molecular electronic structure. In: Calais, J.L., Kryachko, E.S. (eds.) Structure and Dynamics of Atoms and Molecules: Conceptual Trends, pp. 25–67. Springer, Netherlands (1995)CrossRefGoogle Scholar
  12. Gavroglu, K., Simões, A.: The Americans, the Germans, and the beginnings of quantum chemistry: the confluence of diverging traditions. Hist. Stud. Phys. Sci. 25(1), 47–110 (1994)CrossRefGoogle Scholar
  13. Gavroglu, K., Simões, A.: Neither Physics Nor Chemistry. A History of Quantum Chemistry. MIT Press, Cambridge (2012)Google Scholar
  14. Gill, P.M.W., Johnson, B.G., Pople, J.A., Frisch, M.J.: The performance of the Becke–Lee–Yang–Parr (B-LYP) density functional theory with various basis sets. Chem. Phys. Lett. 197(4–5), 499–505 (1992)CrossRefGoogle Scholar
  15. Grant, F.: Divergence, diagnostic, and a dichotomy of methods. In: Scerri, E., Fisher, G. (eds.) Essays in the Philosophy of Chemistry, pp. 306–331. Oxford University Press, New York (2016)Google Scholar
  16. Guala, F.: The problem of external validity (or “parallelism”) in experimental economics. Soc. Sci. Inf. 38(4), 555–573 (1999)CrossRefGoogle Scholar
  17. Hehre, W.J., Stewart, R.F., Pople, J.A.: Self-consistent molecular orbital methods. I. Use of gaussian expansions of slater type atomic orbitals. Chem. Phys. 51, 2657–2664 (1969)Google Scholar
  18. Heitler, W., London, F.: Wechselwirkung neutraler Atome und homopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik 44, 455–472 (1927)CrossRefGoogle Scholar
  19. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), 864–871 (1964)CrossRefGoogle Scholar
  20. Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York (1966)Google Scholar
  21. Kohn, W.: Nobel lecture: Electronic Structure of Matter—Wave Functions and Density Functionals. Rev. Mod. Phys. 71(5), 1253–1266 (1999)CrossRefGoogle Scholar
  22. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), 1133–1138 (1965)CrossRefGoogle Scholar
  23. Levine, I.: Quantum chemistry. Pearson Education Inc, New York (2014)Google Scholar
  24. Lombardi, O., Castagnino, M.: Matters are not so clear on the physical side. Found. Chem. 12, 159–166 (2010)CrossRefGoogle Scholar
  25. Moore, G.: Cramming more components onto integrated circuits. Electron. Mag. 38(8), 114–117 (1965)Google Scholar
  26. Moore, G.: Progress in Digital Integrated Electronics. In: IEEE, IEDM (International Electron Devices Meeting) Tech Digest, vol. 3, pp. 11–13 (1975)Google Scholar
  27. Needham, P., Götz, A.W., Walker, R.C.: Why graphics processing units. In: Walker, R.C., Götz, A.W. (eds.) Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics, pp. 1–19. Wiley, Chichester (2016)Google Scholar
  28. Pople, J.A.: Quantum Chemical Models. Nobel Lecture. NobelPrize.org. Nobel Media AB 2018 (1998). http://www.nobelprize.org/prizes/chemistry/1998/pople/lecture/. Accessed 22 Dec 2018.
  29. Ramsey, J.L.: Between the fundamental and the phenomenological: the challenge of “semi-empirical” methods. Philos. Sci. 64(4), 627–653 (1997)CrossRefGoogle Scholar
  30. Ramsey, J.: Of parameters and principles: producing theory in twentieth century physics and chemistry. Stud. History Philos. Sci. Part B 31(4), 549–567 (2000)CrossRefGoogle Scholar
  31. Scerri, E.: Just how ab initio is ab initio quantum chemistry? Found. Chem. 6, 93–116 (2004a)CrossRefGoogle Scholar
  32. Scerri, E.: Principles and parameters in physics and chemistry. Philos. Sci. 71(5), 1082–1094 (2004b)CrossRefGoogle Scholar
  33. Schrödinger, E.: On the relation between the quantum mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger. In: Schrödinger, E. (ed.) Collected Papers on Wave Mechanics, pp. 45–61. Chelsea Publishing Company, New York (1982). Translated from the original: Über das Verhältnis der Heisenberg-Born_Jordanschen Quantenmechanik zu der Meinen. Annalen der Physik, 4(79), 734–756 (1926)Google Scholar
  34. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14(11), 2717–2744 (2002)Google Scholar
  35. Thiel, W.: Semiempirical quantum–chemical methods in computational chemistry. In: Frenking, G., Kim, K.S., Scuseria, G.E. (eds.) Theory and Applications of Computational Chemistry, pp. 559–580. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  36. Thiel, W.: Semiempirical quantum–chemical methods. WIREs Comput Mol Sci (2013).  https://doi.org/10.1002/wcms.1161 Google Scholar
  37. Tully, J.C.: Perspective on ``Zur Quantentheorie der Molekeln’’ Born M, Oppenheimer R (1927) Ann Phys. 84: 457. Theor Chem Acc 103, 173–176 (2000)CrossRefGoogle Scholar
  38. Van Brakel, J.: Philosophy of Chemistry. Between the Manifest and the Scientific Image. Leuven University Press, Leuven (2000)Google Scholar
  39. Van Vleck, J.H., Sherman, A.: The quantum theory of valence. Rev. Mod. Phys. 7, 167–228 (1935)CrossRefGoogle Scholar
  40. Winsberg, E.: Simulated experiments: methodology for a virtual world. Philos. Sci. 70(1), 105–125 (2003)CrossRefGoogle Scholar
  41. Winsberg, E.: Science in the Age of Computer Simulation. University of Chicago Press, Chicago (2010)CrossRefGoogle Scholar
  42. Woolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)CrossRefGoogle Scholar
  43. Wu, X., Koslowski, A., Thiel, W.: Semiempirical Quantum Chemistry. In: Walker, R.C., Götz, A.W. (eds.) Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics, pp. 239–253. Wiley, Chichester (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Philosophy and Humanities Research Center (CIFFyH)National University of Córdoba (UNC) - Haya De La TorreCórdobaArgentina
  2. 2.Humanities Institute (IDH)National University of Córdoba (UNC) – National Scientific and Technical Research Council (CONICET), Haya De La TorreCórdobaArgentina

Personalised recommendations