Foundations of Chemistry

, Volume 17, Issue 3, pp 187–205 | Cite as

Nanotechnology: from the ancient time to nowadays

  • Delphine Schaming
  • Hynd RemitaEmail author


While nanosciences and nanotechnologies appear as new concepts developed at the end of the twentieth century, we show that metallic nanoparticles have already been used since ancient times, in particular as colorant in the glass and ceramic industries. Moreover, a lot of natural nanomaterials are also present in the mineral, vegetal and animal worlds. Nevertheless, the breakthrough of nanotechnology has been permitted in the past few decades by the advent of apparatus allowing the manipulation and observation of the nanoworld. Indeed, nowadays, nanomaterials and nanoparticles are used for many applications in our daily life, such as in the fields of electronics, catalysis, optics, biology, and medicine. This article presents an overview about nanotechnologies, with applications from ancient times till the present.


Nanoparticles Nanomaterials Ancient glasses and ceramics coloration Catalysis Nanoelectronics Nanomedicine 


  1. Barber, D.J., Freestone, I.C.: An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy. Archaeometry 32(1), 33–45 (1990)CrossRefGoogle Scholar
  2. Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)CrossRefGoogle Scholar
  3. Belloni, J.: The role of silver clusters in photography. C. R. Phys. 3, 381–390 (2002)CrossRefGoogle Scholar
  4. Bogue, R.: Biomimetic adhesives: a review of recent developments. Assembly Autom. 28(4), 282–288 (2008)CrossRefGoogle Scholar
  5. Boulenguez, J., Berthier, S., Leroy, F.: Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly. Appl. Phys. A 106, 1005–1011 (2012)CrossRefGoogle Scholar
  6. Bouville, F., Maire, E., Meille, S., Van de Moortèle, B., Stevenson, A.J., Deville, S.: Strong, tough and brittle bioinspired ceramics from brittle constituents. Nat. Mater. 13, 508–524 (2014)CrossRefGoogle Scholar
  7. Brill, R.H.: The chemistry of the Lycurgus Cup. Proc. 7th Int. Cong. Glass 2(223), 1–13 (1965)Google Scholar
  8. Brill, R.H., Cahill, N.D.: A red opaque glass from Sardis and some thoughts on red opaques in general. J. Glass Stud. 30, 16–27 (1988)Google Scholar
  9. Bruet, B.J.F., Qia, H.J., Boyce, M.C., Panas, R., Tai, K., Frick, L., Ortiz, C.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus. J. Mater. Res. 20, 2400–2419 (2005)CrossRefGoogle Scholar
  10. Burch, R.: Knowledge and know-how in emission control for mobile applications. Catal. Rev. Sci. Eng. 46, 271–333 (2004)CrossRefGoogle Scholar
  11. Cassaignon, S., Colbeau-Justin, C., Duruphty, O.: Titanium dioxide in photocatalysis. In: Brayner, R., Fievet, F., Coradin, T. (eds.) Nanomaterials: A Danger or a Promise?, pp. 153–187. Springer, Berlin (2012)Google Scholar
  12. Chirnside, R.C.: The Rothschild Lycurgus Cup: an analytical investigation. Proc. 7th Int. Cong. Glass 2(222), 1–6 (1965)Google Scholar
  13. Colomban, P.: The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze age to present times in lustre pottery any glass: solid state chemistry, spectroscopy and nanostructure. J. Nano Res. 8, 109–132 (2009)CrossRefGoogle Scholar
  14. Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)CrossRefGoogle Scholar
  15. Dargaud, O., Stievano, L., Faurel, X.: A new procedure of red gold purples at the “Manufacture Nationale de Céramiques de Sèvres”. Gold Bull. 40(4), 283–290 (2007)CrossRefGoogle Scholar
  16. Delcourt, M.O., Belloni, J.: Capture de précurseurs de l’hydrazine par les ions Cu+ au cours de la radiolyse de l’ammoniac liquide. Radiochem. Radioanal. Lett. 13, 329–338 (1973)Google Scholar
  17. Delgado, J., Vilarigues, M., Ruivo, A., Corregidor, V., da Silva, R.C., Alves, L.C.: Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal. Nucl. Instrum. Methods B 269, 2383–2388 (2011)CrossRefGoogle Scholar
  18. Faraday, M.: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)CrossRefGoogle Scholar
  19. Feynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960)Google Scholar
  20. Freestone, I., Meeks, N., Sax, M., Higgitt, C.: The Lycurgus Cup—a Roman nanotechnology. Gold Bull. 40(4), 270–277 (2007)CrossRefGoogle Scholar
  21. Fujishima, A., Zhang, X., Tryk, D.A.: Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy 32, 2664–2672 (2007)CrossRefGoogle Scholar
  22. Ghosh, S., Kouamé, N.A., Ramos, L., Remita, S., Dazzi, A., Deniset-Besseau, A., Beaunier, P., Goubard, F., Aubert P.-H., Remita, H.: Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 14, 505–511 (2015)CrossRefGoogle Scholar
  23. Haberland, H. (ed.): Clusters of Atoms and Molecules. Springer, Berlin (1994)Google Scholar
  24. Hainfeld, J.F., Dilmanian, F.A., Zhong, Z., Slatkin, D.N., Kalef-Ezra, J.A., Smilowitz, H.M.: Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol. 55, 3045–3059 (2010)CrossRefGoogle Scholar
  25. Hainfeld, J.F., Slatkin, D.N., Smilowitz, H.M.: The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315 (2004)CrossRefGoogle Scholar
  26. Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., Hulsbergen van de Kaa, C., de la Rosette, J., Weissleder, R.: Noninvasive detection of clinically occult lymph-node metastases in prostate. Cancer. New Eng. J. Med. 348, 2491–2499 (2003)CrossRefGoogle Scholar
  27. Haruta, M., Kobayashi, T., Sano, H., Yamada, N.: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 & °C. Chem. Lett. 16, 405–408 (1987)CrossRefGoogle Scholar
  28. Hashmi, A.S.K., Hutchings, G.J.: Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006)CrossRefGoogle Scholar
  29. Henglein, A.: The reactivity of silver atoms in aqueous solutions (a γ-radiolysis study). Ber. Bunsenges. Phys. Chem. 81, 556–561 (1977)CrossRefGoogle Scholar
  30. Herold, D.M., Das, I.J., Stobbe, C.C., Iyer, R.V., Chapman, J.D.: Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int. J. Radiat. Biol. 76, 1357–1364 (2000)CrossRefGoogle Scholar
  31. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near infrared thermal therapy of tumors under MR guidance. PNAS 100, 13549–13554 (2003)CrossRefGoogle Scholar
  32. Huang, X., El-Sayed, I.H., Qian, W., El Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006)CrossRefGoogle Scholar
  33. Hunt, L.B.: The true story of Purple of Cassius. Gold Bull. 9(4), 134–139 (1976)CrossRefGoogle Scholar
  34. Jain, S., Coulter, J.A., Hounsell, A.R., Butterworth, K.T., McMahon, S.J., Hyland, W.B., Muir, M.F., Dickson, G.R., Prise, K.M., Currell, F.J., O’Sullivan, J.M., Hirst, D.G.: Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 79, 531–539 (2011)CrossRefGoogle Scholar
  35. José-Yacamán, M., Rendón, L., Arenas, J., Serra Puche, M.C.: Maya blue paint: an ancient nanostructured material. Science 273, 223–225 (1996)CrossRefGoogle Scholar
  36. Karmakar, S., Kumar, S., Rinaldi, R., Maruccio, G.: Nano-electronics and spintronics with nanoparticles. J. Phys: Conf. Ser. 292(012002), 1–15 (2011)Google Scholar
  37. Kubo, R.: Electronic properties of metallic fine particles I. J. Phys. Soc. Jpn. 17, 975–986 (1962)CrossRefGoogle Scholar
  38. Liu, H.S., Song, C.J., Zhang, L., Zhang, J.J., Wang, H.J., Wilkinson, D.P.: A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95–110 (2006)CrossRefGoogle Scholar
  39. Liu, Y., Shigley, J.E., Hurwit, K.N.: Iridescence color of a shell of the mollusk Pinctada Margaritifera caused by diffraction. Opt. Express 4(5), 177–182 (1999)CrossRefGoogle Scholar
  40. Louis, C.: Gold nanoparticles in the past: before the nanotechnology era. In: Louis, C., Pluchery, O. (eds.) Gold Nanoparticles for Physics, Chemistry and Biology. Imperial College Press, World Scientific Publishing, London (2012)CrossRefGoogle Scholar
  41. McMahon, S.J., Prise, K.M., Currell, F.J.: Comment on ‘Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location’. Phys. Med. Biol. 57, 287–290 (2012)CrossRefGoogle Scholar
  42. Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. Leipzig 25, 377–445 (1908)CrossRefGoogle Scholar
  43. Moret, R.: Nanomonde: des nanosciences aux nanotechnologies. CNRS Editions, Paris (2006)Google Scholar
  44. Morse, M.D.: Clusters of transition–metal atoms. Chem. Rev. 86, 1049–1109 (1986)CrossRefGoogle Scholar
  45. Mura, S., Couvreur, P.: Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev. 64, 1394–1416 (2012)CrossRefGoogle Scholar
  46. Niidome, T.: Development of functional gold nanorods for bioimaging and photothermal therapy. J. Phys. Conf. Ser. 232(012011), 1–6 (2010)Google Scholar
  47. Plattner, L.: Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum. J. R. Soc. Interface 1, 49–59 (2004)CrossRefGoogle Scholar
  48. Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., Lacombe, S.: Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21(085103), 1–7 (2010)Google Scholar
  49. Reibold, M., Paufler, P., Levin, A.A., Kochmann, W., Pätzke, N., Meyer, D.C.: Carbon nanotubes in an ancient Damascus sabre. Nature 444, 286 (2006)CrossRefGoogle Scholar
  50. Roux, S., Tillement, O., Billotey, C., Coll, J.L., Duc, G.L., Marquette, C.A., Perriat, P.: Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol. 7, 781–801 (2010)CrossRefGoogle Scholar
  51. Rytwo, G.: Clay minerals as an Ancient nanotechnology: historical uses of clay organic interactions, and future possible perspectives. Macla 9, 15–17 (2008)Google Scholar
  52. Sanders, J.V.: Colour of precious opal. Nature 204, 1151–1153 (1964)CrossRefGoogle Scholar
  53. Schumacher, E.: Metal clusters: between atom and bulk. Chimia 42, 357–376 (1988)Google Scholar
  54. Snow, M.R., Pring, A.: The mineralogical microstructure of shells: Part 2. The iridescence colors of abalone shells. Am. Mineral. 90, 1705–1711 (2005)CrossRefGoogle Scholar
  55. Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M., Barthlott, W.: The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2(4), 126–134 (2007)CrossRefGoogle Scholar
  56. Taniguchi, N.: On the basic concept of “nano-technology”. In: Proceedings of International Conference on Production Engineering. Tokyo, Part II, Japan Society of Precision Engineering (1974)Google Scholar
  57. Thompson, D.: Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bull. 40(4), 267–269 (2007)CrossRefGoogle Scholar
  58. Verita, M., Santopadre, P.: Analysis of gold-colored ruby glass tesserae in Roman church mosaics of the fourth to 12th centuries. J. Glass Stud. 52, 11 (2010)Google Scholar
  59. Yavuz, C.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M., Natelson, M., Colvin, V.L.: Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314, 964–967 (2006)CrossRefGoogle Scholar
  60. Zanella, R., Giorgio, S., Henry, C.R., Louis, C.: Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B. 106, 7634–7642 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratoire ITODYS, CNRS UMR 7086Université Paris DiderotParisFrance
  2. 2.Laboratoire de Chimie Physique, CNRS UMR 8000Université Paris-SudOrsayFrance

Personalised recommendations