Advertisement

Foundations of Chemistry

, Volume 15, Issue 2, pp 157–170 | Cite as

Technochemistry: One of the chemists’ ways of knowing

  • José Antonio ChamizoEmail author
Article

Abstract

In this article, from the characterization of technoscience of the English historian J. Pickstone and the recognition of the importance of models and modelling in research and teaching of chemistry, the term technochemistry is introduced as a way of chemical knowledge. With the above new possibilities, rethinking the chemistry curriculum is opened.

Keywords

Material Model Chemical Education Chemical Knowledge Linear Free Energy Relationship Synthetic Biologist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

To some of my Ibero-American friends for the helpful discussions of the main ideas in this paper: Andoni Garritz, Mercè Izquierdo, Rafael Moreno, Marcos Pinto and Vicente Talanquer.

References

  1. Arendt, H.: The human condition. The University of Chicago Press, Chicago (1958)Google Scholar
  2. Arthur, B.W.: The nature of technology. Free Press, New York (2009)Google Scholar
  3. Benfey, O.T.: From vital force to structural formulas. American Chemical Society, Washington (1975)Google Scholar
  4. Bensaude-Vincent, B., Simon, J.: Chemistry. The impure science. Imperial College, London (2010)Google Scholar
  5. Breslow, R., et al.: Beyond the molecular frontier. Challenges for chemistry and chemical engineering. National Academy Press, Washington (2003)Google Scholar
  6. Bhushan, N.: Are chemical kinds natural kinds? In: Baird, D., Scerri, E., McIntyre, L. (eds.) Philosophy of chemistry, synthesis of a new discipline. Springer, Dordrecht, Springer (2006)Google Scholar
  7. Cerruti, L.: Chemicals as instruments A Language Game. HYLE 4, 1–18 (1998)Google Scholar
  8. Chamizo, J.A.: Las aportaciones de S. Toulmin a la enseñanza de las ciencias [Contributions of S. Toulmin to Science Teaching]. Enseñanza de las Ciencias 25, 133–146 (2007)Google Scholar
  9. Chamizo J.A. A new definition of models and modeling in chemistry’s teaching, Sci. Educ., On line first October 31, 2011Google Scholar
  10. Crosland, M. P.: Historical studies in the language of chemistry. Dover, New York (1962)Google Scholar
  11. Crosland, M.: Early laboratories c1600–c1800 and the location of experimental science. Ann. Sci. 62, 233–253 (2005)CrossRefGoogle Scholar
  12. De Chadarevian, S., Hopwood, N.: Models. The third dimension of science. Stanford University Press, Stanford (2004)Google Scholar
  13. Dusek, V.: Philosophy of technology. An introduction. Blackwell Publishing, Oxford (2006)Google Scholar
  14. Echeverria, J.: Introducción a la Metodología de la Ciencia, [Introduction to Science’s Methodology]. Cátedra, Madrid (2003)Google Scholar
  15. Erduran, S., Scerri, E.: The nature of chemical knowledge and chemical education. In: Gilbert, J.K., et al. (eds.) Chemical education: towards research-based practice. Kluwer, Dordrecht (2002)Google Scholar
  16. Flusser, V.: The shape of things, A philosophy of design. Reaktion Books, London (1999)Google Scholar
  17. Giere, R.N.: Science without laws. University of Chicago Press, Chicago (1999)Google Scholar
  18. Gilbert, J., Boulter, C., Elemer, R.: Positioning models in science education and in design and technology education. In: Gilbert, J. K., Boulter, C. J. (eds.) Developing models in science education. Kluwer, Dordrecht (2000)Google Scholar
  19. Hacking, I.: Representing and intervening. Cambridge University Press, Cambridge (1983)Google Scholar
  20. Hacking, I.: Historical ontology. Harvard University Press, Cambridge (2004)Google Scholar
  21. Hall, N.: The new chemistry. Cambridge University Press, Cambridge (2000)Google Scholar
  22. Harré, R.: Modeling: gateway to the unknown. Elsevier, Amsterdam (2004)Google Scholar
  23. Harré, R.: Pavlov’s dogs and schroedinger’s cat: scenes from living laboratory. Oxford University Press, Oxford (2009)Google Scholar
  24. Herron, J.D., Greenbowe, T.J.: What we can due about Sue: a case study of competence. J. Chem. Educ. 63, 526–531 (1986)CrossRefGoogle Scholar
  25. Hesse, M.: Models and analogies in science. University of Notre Dame Press, Notre Dame (1966)Google Scholar
  26. Higher Education Statistics Agency (HESA). First destination supplements: Combined cohort 1996/97–2001/02. UK, 2002Google Scholar
  27. Hoffmann, R., Lazlo, P.: Representation in chemistry. Angew. Chem. Int. Ed. Engl. 30, 1–16 (1991)Google Scholar
  28. Hottois, G.: Le signe et la technique. La philosophie à l’épreuve de la technique [The sign and the technique Philosophy to the test of the technique]. Aubier, Paris (1984)Google Scholar
  29. Izquierdo, M., Aliberas, y J.: Pensar, actuar i parlar a la classe de ciències [Think, act and talk in science’s class]. Universitat Autónoma de Barcelona, Barcelona (2004)Google Scholar
  30. Justi, R., Chamizo, J.A., García-Franco A. y K Figueiredo., A., Figueiredo, y K.: Experiencias de formación de profesores de ciencias latinoamericanos sobre modelos y modelaje. Enseñanza de las Ciencias 29, 413–426 (2011)Google Scholar
  31. Klein, U.: Techniques of modeling and paper-tools in classical chemistry. In: Morgan, M., Morrison, M. (eds.) Models as mediators. Cambridge University Press, Cambridge (1999)Google Scholar
  32. Klein, U.: Berzelian formulas as paper tools in early nineteenth-century chemistry. Found. Chem. 3, 7–32 (2001)CrossRefGoogle Scholar
  33. Klein, U.: Experiments, models, paper tools. Culture of organic chemistry in the nineteen century. Stanford University Press, Stanford (2003)Google Scholar
  34. Kozma, R., Russell, J.: Modelling students becoming chemists: developing representational competence. In: Gilbert, J.K. (ed.) Visualization in science education. Springer, Dordrecht (2005)Google Scholar
  35. Knight, D.: Ideas in chemistry. A history of the science. Rutgers University Press, Brunswick (1995)Google Scholar
  36. Knowlton D. S. Preparing students for educated living: virtues of problem-based learning across the higher education. In: Knowlton D. S., Sharp D. C. (eds.) New Directions for Teaching and Learning Problem-based learning in the information Age, 95: 5–12, 2003Google Scholar
  37. Kuhn, T.S.: The structure of scientific revolutions. University of Chicago Press, Chicago (1969)Google Scholar
  38. Latour, B.: Science in action. Open University Press, Milton Keynes (1987)Google Scholar
  39. Latour, B.: Pandora’s hope. Essays on the reality of science studies. Harvard University Press, Cambridge (1999)Google Scholar
  40. Latour, B.: The promises of constructivism. In: Ihde, D., Sellinger, E. (eds.) Chasing technoscience. Indiana University Press, Bloomington (2003)Google Scholar
  41. Laudan, L.: Progress and its problems: toward a theory of scientific growth. University of California Press, Berkeley (1997)Google Scholar
  42. Lehn, J.M.: Supramolecular chemistr concepts and perspectives. VCH, Weinheim (1995)CrossRefGoogle Scholar
  43. Malvern, D.: Mathematical models in science. In: Gilbert, J. K., Boulter, C. J. (eds.) Developing models in science education. Kluwer, Dordrecht (2000)Google Scholar
  44. Martínez, A.: Cien preguntas y cien respuestas sobre materiales [One hundred questions and one hundred answers about materials]. UNAM-Terracota, México (2011). CoordGoogle Scholar
  45. McComas, W.F.: The principal elements of the nature of science: dispelling the myths. In: McComas, W.F. (ed.) The nature of science in science education. Kluwer, Dordrecht (1998)Google Scholar
  46. Mehrtens, H.: Mathematical models. In: de Chadarevian, S., Hopwood, N. (eds.) Models. The third dimension of science. Stanford University Press, Stanford (2004)Google Scholar
  47. Meinel, C.: Molecules and croquet balls. In: de Chadarevian, S., Hopwood, N. (eds.) Models. The third dimension of science. Stanford University Press, Stanford (2004)Google Scholar
  48. Moore, J.: Developing and measuring proficiency. J. Chem. Educ. 82, 503 (2005a)CrossRefGoogle Scholar
  49. Moore, J.: Reaping the benefits of chemical education research. J. Chem. Educ. 82, 1431 (2005b)CrossRefGoogle Scholar
  50. Morgan, M., Morrison, M.: Models as mediators. Perspectives on natural and social sciences. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  51. Ortega y Gasset, J.: Meditación de la técnica [Meditation about technique]. Alianza Editorial, Madrid (1982)Google Scholar
  52. Pagliaro, M.: On shapes, molecules and models: an insight into chemical methodology. Euro. J. Chem. 1, 276–281 (2010)CrossRefGoogle Scholar
  53. Pickstone, J.: Ways of knowing. Manchester University Press, Manchester (2000)Google Scholar
  54. Pickstone, J.: On knowing, acting, and the location of technoscience: a response to Barry Barnes. Perspect. Sci. 13, 267–278 (2005)CrossRefGoogle Scholar
  55. Pickstone, J.: Working knowledges before and after circa 1800: practices and disciplines in the history of science. Technol. Med. Isis 98, 489–516 (2007)CrossRefGoogle Scholar
  56. Popper, K.: Conjectures and refutations. Routledge and Kegan Paul, London (1969)Google Scholar
  57. Ramberg, P.J.: Paper tools and fictional worlds: prediction, synthesis and auxiliary hypotheses in chemistry’. In: Klein, U. (ed.) Tools and modes of representation in the laboratory sciences. Kluwer, Dordrecht (2001)Google Scholar
  58. Ramsay, B.O.: Stereochemistry. Nobel prize topics in chemistry. Heyden, London (1981)Google Scholar
  59. Reichenbach, H.: Experience and prediction an analysis of the foundations and the structure of knowledge. The University of Chicago Press, Chicago (1938)Google Scholar
  60. Reish, G.A.: How the cold war transformed philosophy of science. To the ley slopes of logic. Cambridge University Press, Cambridge (2009). spanish translation Cómo la Guerra Fría transformó la filosofía de la ciencia, Buenos Aires: Universidad Nacional de Quilmes, 2009Google Scholar
  61. Roberts, R.M.: Serendipity. Accidental discoveries in science. Wiley, New York (1989)Google Scholar
  62. Rutherford, F.J.: Science for all Americans. AAAS. Oxford University Press, New York (1990)Google Scholar
  63. Sacks, L.J.: Reaction to chemistry is not a laboratory science. J. Chem. Educ. 82, 997 (2005)CrossRefGoogle Scholar
  64. Scerri, E.: The new philosophy of chemistry and its relevance to chemical education. Chem. Educ. Res. Pract. 2, 165–170 (2001)CrossRefGoogle Scholar
  65. Schummer, J.: Challenges for chemistry documentation education and working chemist. Educación Química 10, 92–101 (1999)Google Scholar
  66. Schummer, J.: Why do chemists perform experiments? In: Sobczynska, D., Zeidler, P., Zielonacka-Lis, E. (eds.) Chemistry in the philosophical melting pot. Frankfurt, Peter Lang (2004)Google Scholar
  67. Schummer, J.: The philosophy of chemistry from infancy towards maturity. In: Baird, D., Scerri, E., McIntyre, I. (eds.) Philosophy of chemistry. Synthesis of a new discipline. Springer, Dordrecht (2006)Google Scholar
  68. Schummer, J.: The philosophy of chemistry. In: Allhoff, F. (ed.) Philosophies of the sciences. Oxford, Blackwell-Wiley (2010)Google Scholar
  69. Suckling, C.J., Suckling, K.E., Suckling, C.W.: Chemistry through models. Concepts and applications of modelling in chemical science, technology and industry. Cambridge University Press, Cambridge (1978)Google Scholar
  70. Tala, S.: Enculturation into technoscience: analysis of the views of novices and experts on modelling and learning in nanophysiscs. Sci. Educ. 20, 733–760 (2011)CrossRefGoogle Scholar
  71. Talanquer V. School Chemistry: the need for transgression, Sci. Educ. On line First, September 17, 2011Google Scholar
  72. Toulmin, S.: An examination of the place of reason in ethics. Cambridge University Press, Cambridge (1950)Google Scholar
  73. Toulmin, S.: Foresight and understanding: an enquiry into the aims of science. Indiana University Press, Bloomington (1961)Google Scholar
  74. Toulmin, S.: Human understanding. Princeton University Press, Princeton (1972)Google Scholar
  75. Tversky, B.: Prolegomenon to scientific visualizations. In Gilbert, J. K. (ed.) Visualization in science education. Springer, Dordrecht (2005)Google Scholar
  76. US Bureau of Labor Statistics (US BLS), US Department of Labor: Occupational outlook handbook, 2010–11 library edition Bulletin 2800. Superintendent of Documents, US Government Printing Office, Washington DC (2010)Google Scholar
  77. Van Aalsvoort, J.: Logical positivism as a tool to analyse the problem of chemistry’s lack of relevance in secondary school chemical education’. Int. J. Sci. Educ. 26, 1151–1168 (2004)CrossRefGoogle Scholar
  78. Van Berkel, B., de Vos, W., Pilot, A.: Normal science education and its dangers. Sci. Educ. 9, 123–159 (2000)CrossRefGoogle Scholar
  79. Vega, J.: Los saberes de Odiseo. Una filosofía de la técnica [The knowledge of Odysseus. A philosophy of technique]. Eudeba, Buenos Aires (2010)Google Scholar
  80. Vollmer, S.H.: Space in molecular representations. In: Baird, D., Scerri, E., McIntyre, L. (eds.) Philosophy of chemistry synthesis of a New discipline. Springer, Dordrecht (2006)Google Scholar
  81. Watts, M.: The science of problem-solvin. A practical guide for science teachers. Cassell, London (1991)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of ChemistryNational Autonomous University of MexicoMexico CityMexico

Personalised recommendations