Foundations of Chemistry

, Volume 14, Issue 2, pp 109–155 | Cite as

The emancipation of chemistry

Article

Abstract

In his classic work The Mind and its Place in Nature published in 1925 at the height of the development of quantum mechanics but several years after the chemists Lewis and Langmuir had already laid the foundations of the modern theory of valence with the introduction of the covalent bond, the analytic philosopher C. D. Broad argued for the emancipation of chemistry from the crass physicalism that led physicists then and later—with support from a rabblement of philosophers who knew as much about chemistry as etymologists—to believe that chemistry reduced to physics. Here Broad’s thesis is recast in terms more familiar to chemists. In the hard sell of particle physics, several prominent figures in chemistry—Hoffmann, Primas, and Pauling—have had their views interpreted to imply that they were sympathetic to greedy reductionism when in fact they were not. Indeed, being chemists without physicists as alter egos, they could not but side with Broad’s contention that chemistry, as a science that deals primarily in emergent phenomena which are beyond the purview of physicalism, owes no acquiescence to particle physics and its ethereal wares. Historically, among the most widely used expediencies in chemistry and materials science are additivity or mixture rules and their cohort transferability, all of which are devised and used under the mantle of naive reductionism. Here it is argued that while the transfer of functional groups between molecules works empirically to an extent, it is strictly outlawed by the no-cloning theorem of quantum mechanics. Several illustrative examples related to chemistry’s irreducibility to physics are presented and discussed. The failure of naive reductionism exhibited by the deep-inelastic scattering of leptons by A > 2 nuclei is traced to the same flawed reasoning that was the original basis of Moffitt’s ‘atoms in molecules’ hypothesis, the neglect of context, nuclei in the case of high-energy physics and molecules in the case of chemistry. A non-exhaustive list of other contexts from physics, chemistry, and molecular biology evidencing similar departures from the ideal of additivity or reductionism is provided for the perusal of philosophers. Had the call by the mathematician J. T. Schwartz for developments in mathematical linguistics possessed of a less single, less literal, and less simple-minded nature been met, perhaps it might have persuaded scientists to abandon their regressive fixation with unphysical reductionism and to adapt to new methodologies that engender a more nuanced handling of ubiquitous emergent phenomena as they arise in Nature than is the case today.

Keywords

Broad Emergence Reduction Chemistry Quantum mechanics No-cloning theorem Additivity rules Transferability Deep-inelastic scattering 

References

  1. Adam, A.M.: Farewell to certitude: Einstein’s novelty on induction and deduction, fallibilism. J. Gen. Philos. Sci. 31, 19 (2000)CrossRefGoogle Scholar
  2. Adler, S.L.: Generalized bag models as mean-field approximations to QCD. Phys. Lett. B 110, 302 (1982)CrossRefGoogle Scholar
  3. Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge, UK (2004)CrossRefGoogle Scholar
  4. Admal, N.C., Tadmor, E.B.: A unified interpretation of stress in molecular systems. J. Elast. 100, 63 (2010)CrossRefGoogle Scholar
  5. Admal, N.C., Tadmor, E.B.: A unified interpretation of stress in molecular systems. J. Chem. Phys. 134, 184106 (2011) et passimGoogle Scholar
  6. Akoury, D. et al.: The simplest double slit: Interference and entanglement in double photoionization of H2. Science 318, 949 (2007)CrossRefGoogle Scholar
  7. Al-affan, I.A.M., Watt, D.E.: Mean excitation energies for molecules in gaseous and condensed phases. Radiat. Protect. Dosim. 11, 113 (1985)Google Scholar
  8. Alastuey, A. et al.: Exact results for thermodynamics of the hydrogen plasma: Low-temperature expansions beyond Saha theory. J. Stat. Phys. 130, 1119 (2008)CrossRefGoogle Scholar
  9. Allen, L.C.: Chemistry and electronegativity. Int. J. Quantum Chem. 49, 253 (1994)CrossRefGoogle Scholar
  10. Allred, A.L.: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215 (1961)CrossRefGoogle Scholar
  11. Anderson, P.W.: More is different. Science 177, 393 (1972)CrossRefGoogle Scholar
  12. Anderson, P.W.: Science: a ‘dappled world’ or a ‘seamless web’? Stud. Hist. Phil. Mod. Phys. 32, 487 (2001)CrossRefGoogle Scholar
  13. Antezza, M. et al.: Casimir-Lifshitz force out of thermal equilibrium and asymptotic nonadditivity. Phys. Rev. Lett. 97, 223203 (2006)CrossRefGoogle Scholar
  14. Appelquist, T., Carazzone, J.: Infrared singularities and massive fields. Phys. Rev. D 11, 2856 (1975)CrossRefGoogle Scholar
  15. Applequist, J., Carl, J.R., Fung, K.-K.: An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc. 94, 2952 (1972)CrossRefGoogle Scholar
  16. Arai, T.: Application of the method of deformed atoms in molecules to the hydrogen molecule. J. Chem. Phys. 26, 451 (1957)CrossRefGoogle Scholar
  17. Arai, T.: General analysis of various methods of atoms in molecules. Rev. Mod. Phys. 32, 370 (1960)CrossRefGoogle Scholar
  18. Arai, K. et al.: Structure of the mirror nuclei 9Be and 9B in a microscopic cluster model. Phys. Rev. C 54, 132 (1996)CrossRefGoogle Scholar
  19. Arnold, R.G. et al.: Comparison of the deep-inelastic structure functions of deuterium and aluminum nuclei. Phys. Rev. Lett. 52, 727 (1984)CrossRefGoogle Scholar
  20. Ashman, J. et al.: European Muon collaboration. A measurement of the spin asymmetry and determination of the structure function g 1 in deep inelastic muon-proton scattering. Phys. Lett. 206, 364 (1988)Google Scholar
  21. Athar, M.S., Simó, I.R., Vacas, M.J.V.: Nuclear medium modification of the F 2 (x,Q 2) structure function. Nucl. Phys. A 857, 29 (2011)CrossRefGoogle Scholar
  22. Aubert, J.J. et al. [European Muon Collaboration]: The ratio of the nucleon structure functions F 2N for iron and deuterium. Phys. Lett. B 123, 275 (1983)Google Scholar
  23. Audi, G. et al.: The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 729, 3 (2003)CrossRefGoogle Scholar
  24. Austern, N.: Evaluation of the interaction effect in n-p capture. Phys. Rev. 92, 670 (1953)CrossRefGoogle Scholar
  25. Austern, N., Ross, M.: Evaluation of the interaction effect in n-p capture. Phys. Rev. 117, 1506 (1960)CrossRefGoogle Scholar
  26. Austern, N., Sachs, R.G.: Interaction effects on radiative transitions in nuclei. Phys. Rev. 81, 710 (1951)CrossRefGoogle Scholar
  27. Avbelj, F., Baldwin, R.L.: Limited validity of group additivity for the folding energetics of the peptide group. Proteins 63, 283 (2006)CrossRefGoogle Scholar
  28. Axilrod, B.M., Teller, E.: Interaction of the van der Waals type between three atoms. J. Chem. Phys. 11, 299 (1943)CrossRefGoogle Scholar
  29. Bain, G.A., Berry, J.F.: Diamagnetic corrections and Pascal’s constants. J. Chem. Ed. 85, 532 (2008)CrossRefGoogle Scholar
  30. Baird, D., Scerri, E., McIntyre, L. (eds.): Philosophy of Chemistry, Synthesis of a New Discipline. Springer, Dordrecht (2006)Google Scholar
  31. Basu, D., Ghose, P.: Comments on “New extended model of hadrons”. Phys. Rev. D 12, 4006 (1975)CrossRefGoogle Scholar
  32. Batista, E.R., Xantheas, S.S., Jónsson, H.: Molecular multipole moments of water molecules in ice Ih. J. Chem. Phys. 109, 4546 (1998)CrossRefGoogle Scholar
  33. Batterman, R.W.: The Devil in the Details, Asymptotic Reasoning in Explanation, Reduction, and Emergence. Oxford University Press, New York (2002)Google Scholar
  34. Benoist, P. et al.: The decay probability of 7Be as a function of the ionization of the atom. Phys. Rev. 76, 1000 (1949)CrossRefGoogle Scholar
  35. Bensaude-Vincent, B., Simon, J.: Chemistry, The Impure Science. Imperial College Press, London (2008)CrossRefGoogle Scholar
  36. Benson, S.W.: Thermochemical Kinetics, Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed. Wiley, New York (1973)Google Scholar
  37. Benson, S.W., Buss, J.H.: Additivity rules for the estimation of molecular properties. Thermodynamic properties. J. Chem. Phys. 29, 546 (1958)CrossRefGoogle Scholar
  38. Berkowitz, J.: Atomic and Molecular Photoabsorption. Academic Press, San Diago, CA (2002)Google Scholar
  39. Bhushan, N., Rosenfeld, S. (eds.): Of Minds and Molecules, New Philosophical Perspectives on Chemistry. Oxford University Press, New York (2000)Google Scholar
  40. Bingel, W.A.: United atom treatment of the behavior of potential energy curves of diatomic molecules for small R. J. Chem. Phys. 30, 1250 (1959)CrossRefGoogle Scholar
  41. Bissantz, C., Kuhn, B., Stahl, M.: A medicinal chemist’s guide to molecular interactions. J. Med. Chem. 53, 5061 (2010)CrossRefGoogle Scholar
  42. Blanco, F., Garcia, G.: Screening corrections for calculation of electron scattering differential cross sections from polyatomic molecules. Phys. Lett. A 330, 230 (2004)CrossRefGoogle Scholar
  43. Blankenbecler, R. et al.: Some tests of relativistic SU(6) schemes. Phys. Rev. Lett. 14, 518 (1965)CrossRefGoogle Scholar
  44. Blin-Stoyle, R.J.: Theories of nuclear moments. Rev. Mod. Phys. 28, 75 (1956)CrossRefGoogle Scholar
  45. Bobeldijk, M., van der Zande, W.J., Kistemaker, P.G.: Simple models for the calculation of photoionization and electron impact ionization cross sections of polyatomic molecules. Chem. Phys. 179, 125 (1994)CrossRefGoogle Scholar
  46. Bodek, A. et al.: Electron scattering from nuclear targets and quark distributions in nuclei. Phys. Rev. Lett. 50, 1431 (1983)CrossRefGoogle Scholar
  47. Bodek, A.: Comparison of the deep-inelastic structure functions of deuterium and aluminum nuclei. Phys. Rev. Lett. 51, 534 (1983)CrossRefGoogle Scholar
  48. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37, 863 (1926a)CrossRefGoogle Scholar
  49. Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803 (1926b)CrossRefGoogle Scholar
  50. Born, M.: The statistical interpretation of quantum mechanics. Science 122, 675 (1955)CrossRefGoogle Scholar
  51. Bouchez, R. et al.: Variation de la période du nuclide 7Be en fonction du degré d’ionisation de l’atome. J. Phys. Radium 8, 336 (1947)CrossRefGoogle Scholar
  52. Bouchez, R. et al.: Nouvelle détermination de la différence des périodes de 7Be métallique et de 7BeF2. J. Phys. Radium 17, 363 (1956)CrossRefGoogle Scholar
  53. Boys, S.F.: Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another, Rev. Mod. Phys. 32, 296 (1960)CrossRefGoogle Scholar
  54. Braaten, E., Hammer, H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006) et passimGoogle Scholar
  55. Brady, G.P., Sharp, K.A.: Decomposition of interaction free energies in proteins and other complex systems. J. Mol. Biol. 254, 77 (1995)CrossRefGoogle Scholar
  56. Bragg, W.H.: Studies in Radioactivity. MacMillan, London (1912)Google Scholar
  57. Broad, C.D.: The Mind and its Place in Nature. Harcourt Brace, New York (1925)Google Scholar
  58. Brock, C.W., Glusker, J.P.: Organization of water around a beryllium cation. Inorg. Chem. 32, 1242 (1993)CrossRefGoogle Scholar
  59. Brooks, D.H.M.: How to perform a reduction. Philos. Phenom, Res. 54, 803 (1994)CrossRefGoogle Scholar
  60. Brown, G.E., Rho, M.: The little bag. Phys. Lett. B 82, 177 (1979)CrossRefGoogle Scholar
  61. Brown, G.E., Rho, M., Vento, V.: Little bag dynamics. Phys. Lett. B 84, 383 (1979)CrossRefGoogle Scholar
  62. Brown, L.M., Pais, A., Pippard, B. (eds.): Twentieth Century Physics. Institute of Physics, Bristol and Philadelphia (1995)Google Scholar
  63. Brüche, E.: Wirkungsquerschnitt und Molekelbau in der Pseudoedelgasreihe, Ne–HF–H2O−NH3−CH4. Ann. Phys. (Leipzig) 1, 93 (1929)Google Scholar
  64. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)CrossRefGoogle Scholar
  65. Bunge, M.: Is chemistry a branch of physics? J. Gen. Philos. Sci. 13, 209 (1982)Google Scholar
  66. Burkard, G., Brito, F.: Nonadditivity of decoherence rates in superconducting qubits. Phys. Rev. B 72, 054528 (2005)CrossRefGoogle Scholar
  67. Byers Brown, W.: On the quantal virial equation for the pressure. J. Chem. Phys. 28, 522 (1958)CrossRefGoogle Scholar
  68. Cahn, R.N.: The eighteen arbitrary parameters of the standard model in your everyday life. Rev. Mod. Phys. 68, 951 (1996)CrossRefGoogle Scholar
  69. Canton, S.E. et al.: Direct observation of Young’s double-slit interferences in vibrationally resolved photoionization of diatomic molecules. Proc. Natl. Acad. Sci. USA 108, 7302 (2011)CrossRefGoogle Scholar
  70. Cao, T.Y. (ed.): Conceptual Foundations Quantum Field Theory. Cambridge University Press, Cambridge, UK (1999)Google Scholar
  71. Cao, T.Y.: Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge, UK, 1997), Sec. 11.4.Google Scholar
  72. Cayley, A.: On the mathematical theory of isomers. Phil. Mag. 67, 444 (1874)Google Scholar
  73. Chodos, A. et al.: New extended model of hadrons. Phys. Rev. D 9, 3471 (1974)CrossRefGoogle Scholar
  74. Clementi, E. et al.: Nonadditivity of interaction in water trimers. Int. J. Quantum Chem. 17, 377 (1980)CrossRefGoogle Scholar
  75. Clough, S.A. et al.: Dipole moment of water from Stark measurements of H2O, HDO, and D2O. J. Chem. Phys. 59, 2254 (1973)CrossRefGoogle Scholar
  76. Congreve, M. et al.: Recent developments in fragment-based drug discovery. J. Med. Chem. 52, 3661 (2008)CrossRefGoogle Scholar
  77. Cooper, D.L. (ed.): Valence Bond Theory. Elsevier, Amsterdam (2002)Google Scholar
  78. Corey, E.J.: The logic of chemical synthesis: Multistep synthesis of complex carbogenic molecules. Angew. Chem. Int. Ed. Engl. 30, 455 (1991)CrossRefGoogle Scholar
  79. Cowan, C.L. Jr. et al.: Detection of the free neutrino: a confirmation. Science 124, 103 (1956)CrossRefGoogle Scholar
  80. Crum Brown, A.: On an application of mathematics to chemistry. Trans. R. Soc. Edin. 24, 691 (1867)Google Scholar
  81. Crum Brown, A.: Presidential address of the chemistry section. In: Report of the Forty-Fourth Meeting of the British Association for the Advancement of Science, held at Belfast in August 1874, pp. 45–50. John Murray, London (1875)Google Scholar
  82. Cuddell, J.R. et al. [COMPETE Collaboration]: Hadronic scattering amplitudes: medium-energy constraints on asymptotic behavior. Phys. Rev. D 65, 074024 (2002)Google Scholar
  83. Curceanu, C. et al.: Experimental tests of quantum mechanics: Pauli exclusion principle violation (the VIP experiment) and future perspectives. Physics Procedia 17, 40 (2011)CrossRefGoogle Scholar
  84. Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Natl. Acad. Sci. USA 38, 235 (1952)CrossRefGoogle Scholar
  85. Daudel, R.: Altérations des périodes radioactives sous l’influence des méthodes chimiques. Rev. Sci. Paris 85, 162 (1947)Google Scholar
  86. DeGrand, T. et al.: Masses and other parameters of the light hadrons. Phys. Rev. D 12, 2060 (1975)CrossRefGoogle Scholar
  87. Dempster, A.J.: A new method of positive ray analysis. Phys. Rev. 9, 316 (1918)CrossRefGoogle Scholar
  88. Denbigh, K.G.: The polarizabilities of bonds. I, Trans. Faraday Soc. 36, 936 (1940)CrossRefGoogle Scholar
  89. de Vries, R.Y., Briels, W.J., Feil, D.: Critical analysis of non-nuclear electron-density maxima and the maximum entropy method. Phys. Rev. Lett. 77, 1719 (1996)CrossRefGoogle Scholar
  90. DeTar, C.E., Donoghue, J.F.: Bag models of hadrons. Ann. Rev. Nucl. Part. Sci. 33, 235 (1983)CrossRefGoogle Scholar
  91. DeVoe, H.: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys. 41, 393 (1964)CrossRefGoogle Scholar
  92. DeVoe, H.: Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals. J. Chem. Phys. 43, 3199 (1965)CrossRefGoogle Scholar
  93. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)CrossRefGoogle Scholar
  94. Dill, J.A.: Additivity principles in biochemistry. J. Biol. Chem. 272, 701 (1997)Google Scholar
  95. Dingley, A.J., Cordier, F., Grzesiek, S.: An introduction to hydrogen bond scalar couplings. Concepts Mag. Reson. 13, 103 (2001) et passimGoogle Scholar
  96. Dirac, P.A.M.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714 (1929)CrossRefGoogle Scholar
  97. Duck, I., Sudarshan, E.C.G.: Pauli and the Spin-Statistics Theorem. WSP, River Edge, NJ (1997)Google Scholar
  98. Duck, I., Sudarshan, E.C.G.: Toward an understanding of the spin-statistics theorem. Am. J. Phys. 66, 284 (1998)CrossRefGoogle Scholar
  99. Dür, W., Cirac, J.I., Horodecki, P.: Nonadditivity of quantum capacity for multiparty communication channels. Phys. Rev. Lett. 93, 020503 (2004)CrossRefGoogle Scholar
  100. Earley, Sr., J.E. (ed.): Chemical explanation: Characteristics, development, autonomy. New York Academy of Sciences, New York (2003)Google Scholar
  101. Ebeling, W.: Statistische Thermodynamik der gebundenen Zustände in Plasmen. Ann. Phys. 474, 104 (1967)CrossRefGoogle Scholar
  102. Edmiston, C., Ruedenberg, K.: Localized atomic and molecular orbitals. Rev. Mod. Phys. 35, 457 (1963)CrossRefGoogle Scholar
  103. Efimov, V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)CrossRefGoogle Scholar
  104. Efimov, V.: Weakly-bound states of three resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971)Google Scholar
  105. Efimov, V.: Energy levels of three resonantly-interacting particles. Nucl. Phys. A 210, 157 (1973)CrossRefGoogle Scholar
  106. Einstein, A., Infeld, L.: The Evolution of Physics, p. 312. Cambridge University Press, New York (1938)Google Scholar
  107. Eldredge, N., Gould, S.J.: Punctuated equilibria: An alternative to phyletic gradualism. In: Schopf, T.J.M. (ed.) Models in Paleobiology, pp. 82–115. Freeman Cooper & Co., San Francisco (1972)Google Scholar
  108. Elliott, J.P.: The shell model today. Nucl. Phys. A 507, 15 (1990)CrossRefGoogle Scholar
  109. Ellison, F.O.: A method of diatomics in molecules. I. General theory and application to H2O. J. Am. Chem. Soc. 85, 3540 (1963)CrossRefGoogle Scholar
  110. Emery, G.T.: Perturbation of nuclear decay rates. Ann. Rev. Nucl. Sci. 22, 165 (1972)CrossRefGoogle Scholar
  111. Fedak, W.A., Prentis, J.J.: The 1925 Born and Jordan paper "On quantum mechanics". Am. J. Phys. 77, 128 (2009) et passimGoogle Scholar
  112. Feigenbaum, J.A., Freund, P.G.O., Pigli, M.: High energy hadronic total cross sections. Phys. Rev. D 56, 2596 (1997)Google Scholar
  113. Fisher, M.E.: Condensed matter physics: does quantum mechanics matter? In: Feshbach, H., Matsui, T., Oleson, A. (eds.) Niels Bohr, Physics and the World, pp. 65–115. Harwood Academic Publishers, Chur, CH (1988)Google Scholar
  114. Fitch, W.L., Sauter, A.D.: Calculation of relative electron impact total ionization cross sections for organic molecules. Anal. Chem. 55, 832 (1983)CrossRefGoogle Scholar
  115. Foster, K.R., Huber, P.W.: Judging Science, Scientific Knowledge and the Federal Courts. MIT Press, Cambridge, MA (1998)Google Scholar
  116. Fowler, R.H.: A report on homopolar valency and its quantum mechanical interpretation. In: Chemistry at the Centenary (1931) Meeting of the British Association for the Advancement of Science, pp. 226–246. W. Heffter & Sons, Ltd., Cambridge, UK (1932)Google Scholar
  117. Freund, P.G.O.: Relation between πppp, and \(\overline{p} p\) scattering at high energies. Phys. Rev. Lett. 15:929 (1965)Google Scholar
  118. Fröhlich, H.: A solution of the Schrödinger equation by a perturbation of the boundary conditions. Phys. Rev. 54, 945 (1938)CrossRefGoogle Scholar
  119. Gaskell, D. et al. [JLab Collaboration]: New measurements of the EMC effect in light nuclei and at large x. Presented at the sixth international conference on perspectives in hadronic physics, May 2008. AIP Conf. Proc. 1056, 148 (2008)Google Scholar
  120. Geesaman, D.F., Saito, K., Thomas, A.W.: The nuclear EMC effect, Ann. Rev. Nucl. Part. Sci. 45, 337 (1995) et passimGoogle Scholar
  121. Ghose, P.: First-order formalism for scalar fields and the MIT bag model. Phys. Rev. D 16, 1974 (1977)CrossRefGoogle Scholar
  122. Gomez, J. et al.: Measurement of the A dependence of deep-inelastic electron scattering. Phys. Rev. D 49, 4348 (1994)CrossRefGoogle Scholar
  123. Grattan-Guinness, I.: Solving Wigner’s mystery: the reasonable (though perhaps limited) effectiveness of mathematics in the natural sciences. Math. Intell. 30, 7 (2008)CrossRefGoogle Scholar
  124. Greensite, J.: An Introduction to the Confinement Problem. Springer, Berlin (2011)CrossRefGoogle Scholar
  125. Gu, J., Xie, Y., Schaefer, H.F. III: Near 0 eV electrons attach to nucleotides. J. Am. Chem. Soc. 128, 1250 (2006)CrossRefGoogle Scholar
  126. Guo, J.-H. et al.: X-ray emission spectroscopy of hydrogen bonding and electronic structure of liquid water. Phys. Rev. Lett. 89, 137402 (2002)CrossRefGoogle Scholar
  127. Gupta, S. et al.: Scale for the phase diagram of quantum chromodynamics. Science 332, 1525 (2011)CrossRefGoogle Scholar
  128. Hamming, R.W.: The unreasonable effectiveness of mathematics. Am. Math. Monthly 87, 81 (1980)CrossRefGoogle Scholar
  129. Hartmann, S., Hoefer, C., Bovens, L. (eds.): Nancy Cartwright’s Philosophy of Science. Routledge, New York (2008)Google Scholar
  130. Hasenfratz, P., Kuti, J.: The quark bag mode. Phys. Rept. 40, 75 (1978)CrossRefGoogle Scholar
  131. Hashimoto, K., Yoda, N., Iwata, S.: Theoretical study of hydrated Be2+ ions. Chem. Phys. 116, 193 (1987)CrossRefGoogle Scholar
  132. Heisenberg, W.: Quantum theory and its interpretation. In: Rozental, S. (ed.) Niels Bohr: His Life and Work As Seen by His Friends and Colleagues, pp. 94–108. North-Holland, Amsterdam (1967)Google Scholar
  133. Heisenberg, W.: Contribution to discussion on the structure of simple molecules. In: Chemistry at the Centenary (1931) Meeting of the British Association for the Advancement of Science, pp. 247–248. W. Heffter & Sons, Ltd., Cambridge, UK (1932)Google Scholar
  134. Heitler, W., Rumer, G.: Quantentheorie der chemischen Bindung für mehratomige Moleküle. Z. Physik 68, 12 (1931)CrossRefGoogle Scholar
  135. Hinshelwood, C.N.: The more recent work on the reaction between hydrogen and oxygen. Proc. R. Soc. Lond. A 188, 1 (1946)CrossRefGoogle Scholar
  136. Hirai, M. et al.: Clustering aspects in nuclear structure functions. Phys. Rev. C 83, 035202 (2011)CrossRefGoogle Scholar
  137. Hoffmann, R.: Under the surface of the chemical article, Angew. Chem. Int. Ed. Engl. 27, 1593 (1988)CrossRefGoogle Scholar
  138. Hoffmann, R., Minkin, V.L., Carpenter, B.K.: Ockham’s razor and chemistry. HYLE—Int. J. Phil. Chem. 3, 3 (1997)Google Scholar
  139. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964)CrossRefGoogle Scholar
  140. Hollett, J.W., McKemmish, L.K., Gill, P.M.W.: The nature of electron correlation in a dissociating bond. J. Chem. Phys. 134, 224103 (2011)CrossRefGoogle Scholar
  141. Horodecki, R. et al.: Quantum entanglement. Rev. Mod. Phys. 81, 856 (2009)CrossRefGoogle Scholar
  142. Huang, J., Fan, X.: Why QSAR fails. An empirical evaluation using conventional computational approach. Mol. Pharmaceutics 8, 600 (2011)CrossRefGoogle Scholar
  143. Hund, F.: Early history of the quantum mechanical treatment of the chemical bond. Angew. Chem. Int. Ed. Engl. 16, 87 (1977)CrossRefGoogle Scholar
  144. Hunt, K.L.C.: The energy as a functional of the charge density and the charge-density susceptibility: a simple, exact, nonlocal expression for the electronic energy of a molecule. J. Chem. Phys. 116, 5440 (2002)CrossRefGoogle Scholar
  145. Hurley, A.C.: On the method of atoms in molecules. Proc. Phys. Soc. A 68, 149 (1955)CrossRefGoogle Scholar
  146. Hurley, A.C.: On the method of atoms in molecules. II: an intra-atomic correlation correction. Proc. Phys. Soc. A 69, 49 (1956)CrossRefGoogle Scholar
  147. Hurley, A.C.: Role of atomic valence states in molecular energy calculations. J. Chem. Phys. 28, 532 (1958)CrossRefGoogle Scholar
  148. Hurley, A.C.: Elimination of atomic errors from molecular calculations. Rev. Mod. Phys. 35, 448 (1963)CrossRefGoogle Scholar
  149. Irving, J.H., Kirkwood, J.G.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817 (1950)CrossRefGoogle Scholar
  150. Isaacs, E.D. et al.: Covalency of the hydrogen bond in ice: a direct X-ray measurement. Phys. Rev. Lett. 82, 4445 (1999)CrossRefGoogle Scholar
  151. Isaacs, E.D. et al.: Compton scattering evidence for covalency of the hydrogen bond in ice. J. Phys. Chem. Solids 61, 403 (2000)CrossRefGoogle Scholar
  152. Iversen, B.B. et al.: Experimental evidence for the existence of non-nuclear maxima in the electron-density distribution of metallic beryllium. A comparative study of the maximum entropy method and the multipole refinement method. Acta Cryst. B 51, 580 (1995)CrossRefGoogle Scholar
  153. Iversen, B.B., Jensen, J.L., Danielsen, J.: Errors in maximum-entropy charge-density distributions obtained from diffraction data. Acta Cryst. A 53, 376 (1997)CrossRefGoogle Scholar
  154. Jayatilaka, D.: Wave function for beryllium from X-ray diffraction data. Phys. Rev. Lett. 80, 798 (1998)CrossRefGoogle Scholar
  155. Jayatilaka, D., Dittrich, B.: X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations. Acta Cryst. A 64, 383 (2008)CrossRefGoogle Scholar
  156. Jaynes, E.T.: Probability Theory, The Logic of Science. In: Bretthorst G.L. (ed.) Cambridge University Press, Cambridge, UK (2003)Google Scholar
  157. Jeffrey, G.A., Parry, G.S., Mozzi, R.L.: Study of the Wurtzite-type binary compounds. I. Structures of aluminum nitride and beryllium oxide. J. Chem. Phys. 25, 1024 (1956)CrossRefGoogle Scholar
  158. Jiang, Y., Sun, J., Wan, L.: Geometric shielding effects of electron scattering from polyatomic molecules. Phys. Lett. A 237, 53 (1997)CrossRefGoogle Scholar
  159. Johlige, H.W., Aumann, D.C., Born, H.-J.: Determination of the relative electron density at the Be nucleus in different chemical combinations, measured as changes in the electron-capture half-life of 7Be. Phys. Rev. C 2, 1616 (1970)CrossRefGoogle Scholar
  160. Johnson, S.R.: The trouble with QSAR (or How I learned to stop worrying and embrace fallacy). J. Chem. Inf. Model. 48, 25 (2008)CrossRefGoogle Scholar
  161. Johnson, K., Nohl, C.: A simple semiclassical model for the rotational states of mesons containing massive quarks. Phys. Rev. D 19, 291 (1979)CrossRefGoogle Scholar
  162. Johnson, K., Thorn, C.B.: Stringlike solutions of the bag model. Phys. Rev. D 13, 1934 (1976)CrossRefGoogle Scholar
  163. Johnson, K., Treiman, S.B.: Implications of SU(6) symmetry for total cross sections. Phys. Rev. Lett. 14, 189 (1965)CrossRefGoogle Scholar
  164. Joshipura, K.N., Patel, P.M.: Electron impact total (elastic + inelastic) cross-sections of C, N & O atoms and their simple molecules. Z. Phys. D 29, 269 (1994)CrossRefGoogle Scholar
  165. Kant, I.: Prolegomena to Any Future Metaphysics (G. Hatfield, Trans. & Ed.). Cambridge University Press, Cambridge, UK (2004)Google Scholar
  166. Kaplan, I.G.: Is the Pauli exclusive principle an independent quantum mechanical postulate? Int. J. Quantum Chem. 89, 268 (2002)CrossRefGoogle Scholar
  167. Karwasz, G.P., Brusa, R.S., Zecca A.: One century of experiments on electron-atom and molecule scattering: a critical review of integral cross-sections. II.—Polyatomic molecules. Riv. Nuovo Cimento 24(1): 1 (2001a)Google Scholar
  168. Karwasz, G.P., Brusa, R.S., Zecca, A.: One century of experiments on electron-atom and molecule scattering: a critical review of integral cross-sections. III.—Hydrocarbons and halides. Riv. Nuovo Cimento 24(4), 1 (2001b)Google Scholar
  169. Kebarle, P.: Ion thermochemistry and solvation from gas phase ion equilibria. Ann. Rev. Phys. Chem. 28, 445 (1977)CrossRefGoogle Scholar
  170. King, R.A. et al.: Chemistry as a function of the fine-structure constant and the electron-proton mass ratio, Phys. Rev. A 81, 042523 (2010)CrossRefGoogle Scholar
  171. Kohler, R.E. Jr.: The origin of G. N. Lewis’s theory of the shared pair bond. Hist. Stud. Phys. Sci. 3, 343 (1971)Google Scholar
  172. Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004 (2001)CrossRefGoogle Scholar
  173. Kostro, L.: Albert Einstein’s hypothetism. Sci. Edu. 7, 317 (1998)CrossRefGoogle Scholar
  174. Kraushaar, J.J., Wilson, E.D., Bainbridge, K.T.: Comparison of the values of the disintegration constant of 7Be in Be, BeO, and BeF2. Phys. Rev. 90, 610 (1953)CrossRefGoogle Scholar
  175. Kutzelnigg, W.: Perspective on "quantum mechanics of many-electron systems". Theor. Chem. Acc. 103, 182 (2000)CrossRefGoogle Scholar
  176. Lackner, K.S., Zweig, G.: Introduction to the chemistry of fractionally charged atoms. Electronegativity Phys. Rev. D 28, 1671 (1983)CrossRefGoogle Scholar
  177. Landauer, R.: Wanted: a physically possible theory of physics. IEEE Spectrum 4, 105 (1967)CrossRefGoogle Scholar
  178. Landolt-Börnstein.: Photon and Electron Interactions with Atoms, Molecules and Ions, vol. I/17 C, (Y. Itikawa, Ed.) Springer-Verlag, Berlin and Heidelberg (2003)Google Scholar
  179. Langmuir, I.: The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc. 41, 868 (1919)CrossRefGoogle Scholar
  180. Larsen, F.K., Hansen, N.K.: Diffraction study of the electron density distribution in beryllium metal. Acta Cryst. B 40, 169 (1984)CrossRefGoogle Scholar
  181. Latimer, R.W.M., Rodebush, W.H.: Polarity and ionization from the standpoint of the Lewis theory of valence. J. Am. Chem. Soc. 42, 1419 (1920)CrossRefGoogle Scholar
  182. Laughlin, R.B. et al.: The middle way. Proc. Natl. Acad. Sci. USA 97, 32 (2000)CrossRefGoogle Scholar
  183. Laughlin, R.B., Pines, D.: The theory of everything. Proc. Natl. Acad. Sci. USA 97, 28 (2000)CrossRefGoogle Scholar
  184. Lazaridis, T., Karplus, M.: Microscopic basis of macroscopic thermodynamics. In: Di Cera, E. (ed.) Thermodynamics in Biology, pp. 3–48. Oxford University Press, New York (2000)Google Scholar
  185. Lee, P.A., Pendry, J.B.: Theory of the extended X-ray absorption fine structure. Phys. Rev. B 11, 2795 (1975)CrossRefGoogle Scholar
  186. Leggett, A.J.: The Problems of Physics. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  187. Leininger, R.F., Segrè, E., Wiegard, C.: Experiments on the effect of atomic electrons on the decay constant of 7Be II. Phys. Rev. 76, 897 (1949)CrossRefGoogle Scholar
  188. Lenard, P.: Über die Absorption von Kathodenstrahlen verschidener Geschwindigkeit. Ann. Phys. (Leipzig) 12, 714 (1903)Google Scholar
  189. Lesk, A.M.: The unreasonable effectiveness of mathematics in molecular biology. Math. Intell. 22, 28 (2000)CrossRefGoogle Scholar
  190. Lesk, A.M.: Compared to what? Math. Intell. 23, 4 (2001)CrossRefGoogle Scholar
  191. Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762 (1916)CrossRefGoogle Scholar
  192. Lewis, G.N.: Valence and Structure of Atoms and Molecules. Chemical Catalog, New York (1923)Google Scholar
  193. Lewis, G.N.: The chemical bond. J. Chem. Phys. 1, 17 (1933)CrossRefGoogle Scholar
  194. Libit, L., Hoffmann, R.: Toward a detailed orbital theory of substituent effects: Charge transfer, polarization, and the methyl group. J. Am. Chem. Soc. 96, 1370 (1974)CrossRefGoogle Scholar
  195. Liegener, C., Del Re, G.: Chemistry vs. physics: the reduction myth and the unity of science. J. Gen. Philos. Sci. 18, 165 (1987)Google Scholar
  196. Lipkin, H.J.: New systematics in hadron total cross section. Phys. Rev. D 11, 1827 (1975)CrossRefGoogle Scholar
  197. Lipkin, H.J., Scheck, F.: Quark model for forward scattering amplitudes. Phys. Rev. Lett. 16, 71 (1966)CrossRefGoogle Scholar
  198. Little, M.: “Better than numbers…” a gentle critique of evidence-based medicine. ANZ J. Surgery 73, 177 (2003)CrossRefGoogle Scholar
  199. Lorentz, H.A.: The Theory of Electrons. Columbia University Press, New York (1909)Google Scholar
  200. Lucha, W., Schöberl, F.F., Gromes, D.: Bound states of quarks. Phys. Rep. 200, 127 (1991)CrossRefGoogle Scholar
  201. Maranganti, R., Sharma, P., Wheeler, L.: Quantum notions of stress. J. Aerosp. Eng. 20, 22 (2007) et passimGoogle Scholar
  202. Maranganti, R., Sharma, P.: Revisiting quantum notions of stress. Proc. R. Soc. Lond. A 466, 2097 (2010) et passimGoogle Scholar
  203. Mark, A.E., van Gunsteren, W.F.: Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J. Mol. Biol. 240, 167 (1994)CrossRefGoogle Scholar
  204. Marx, D., Hutter, J., Parrinello, M.: Density functional study of small aqueous Be2+ clusters. Chem. Phys. Lett. 241, 457 (1995)CrossRefGoogle Scholar
  205. Marx, D., Sprik, M., Parrinello, M.: Ab initio molecular dynamics of ion solvation. The case of Be2+ in water. Chem. Phys. Lett. 273, 360 (1997)CrossRefGoogle Scholar
  206. Mason, P.E. et al.: Be2+ hydration in concentrated aqueous solutions of BeCl2. J. Phys. Chem. B 112, 1935 (2008)CrossRefGoogle Scholar
  207. Mathieu, P.: New Lagrangian formalism for the bag. Phys. Rev. D 31, 2145 (1985)CrossRefGoogle Scholar
  208. McLaughlin, B.: The rise and fall of British emergentism. In: Beckerman, A., Flohr, H., Kim, J. (eds.) Emergence or Reduction? Essays on the Prospect of a Non-Reductive Physicalism, pp. 49–93. Walter de Gruyter, Berlin (1992)CrossRefGoogle Scholar
  209. McLellan, A.G.: Virial theorem generalized. Am. J. Phys. 42, 239 (1974)CrossRefGoogle Scholar
  210. Merritt, J.M., Bondybey, V.E., Heaven, M.C.: Beryllium dimer—caught in the act of bonding. Science 324, 1548 (2009)CrossRefGoogle Scholar
  211. Mezey, P.G.: The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96, 169 (1999a)CrossRefGoogle Scholar
  212. Mezey, P.G.: Holographic electron density shape theorem and its role in drug design and toxicological risk assessment. J. Chem. Inf. Comput. Sci. 39, 224 (1999b)Google Scholar
  213. Moffitt, W.: Atoms in molecules and crystals. Proc. R. Soc. Lond. A 210, 245 (1951)CrossRefGoogle Scholar
  214. Monson, P.A., Rigby, M., Steele, W.A.: Non-additive energy effects in molecular liquids. Mol. Phys. 49, 893 (1983)CrossRefGoogle Scholar
  215. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. Phys. Rev. 40, 55 (1932a)CrossRefGoogle Scholar
  216. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. II. General considerations. Phys. Rev. 41, 49 (1932b)CrossRefGoogle Scholar
  217. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. III. Quantum theory of the double bond. Phys. Rev. 41, 751 (1932c)CrossRefGoogle Scholar
  218. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. IV. Electronic states, quantum theory of the double bond. Phys. Rev. 43, 279 (1933a)CrossRefGoogle Scholar
  219. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. V. Molecules RXn. J. Chem. Phys. 1, 492 (1933b)CrossRefGoogle Scholar
  220. Mulliken, R.S.: A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782 (1934)CrossRefGoogle Scholar
  221. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. VI. On the method of molecular orbitals. J. Chem. Phys. 3, 375 (1935a)CrossRefGoogle Scholar
  222. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. VII. Ammonia and water type molecules and their derivatives. J. Chem. Phys. 3, 506 (1935b)CrossRefGoogle Scholar
  223. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. VIII. Ionization potentials. J. Chem. Phys. 3, 514 (1935c)CrossRefGoogle Scholar
  224. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. IX. Methane, ethane, ethylene, acetylene. J. Chem. Phys. 3, 517 (1935d)CrossRefGoogle Scholar
  225. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. X. Aldehydes, ketones and related molecules. J. Chem. Phys. 3, 564 (1935e)CrossRefGoogle Scholar
  226. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XI. Electroaffinity, molecular orbitals and dipole moments. J. Chem. Phys. 3, 573 (1935f)CrossRefGoogle Scholar
  227. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XII. Electroaffinity and molecular orbitals, polyatomic applications. J. Chem. Phys. 3, 586 (1935g)CrossRefGoogle Scholar
  228. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XIII. Diborane and related molecules. J. Chem. Phys. 3, 635 (1935h)CrossRefGoogle Scholar
  229. Mulliken, R.S.: Electronic structures of polyatomic molecules and valence. XIV. Linear triatomic molecules, especially carbon dioxide. J. Chem. Phys. 3, 720 (1935i)CrossRefGoogle Scholar
  230. Mulliken, R.S.: The low electronic states of simple heteropolar diatomic molecules. I. General survey. Phys. Rev. 50, 1017 (1936a)CrossRefGoogle Scholar
  231. Mulliken, R.S.: The low electronic states of simple heteropolar diatomic molecules. II. Alkali metal hydrides. Phys. Rev. 50, 1028 (1936b)CrossRefGoogle Scholar
  232. Mulliken, R.S.: The low electronic states of simple heteropolar diatomic molecules. III. Hydrogen and univalent metal halides. Phys. Rev. 51, 310 (1937)CrossRefGoogle Scholar
  233. Mulliken, R.S.: The Rydberg states of molecules. Parts I–V. J. Am. Chem. Soc. 86, 3183 (1964)CrossRefGoogle Scholar
  234. Mulliken, R.S.: The Rydberg states of molecules. VI. Potential curves and dissociation behavior of (Rydberg and other) diatomic states. J. Am. Chem. Soc. 88, 1849 (1966)CrossRefGoogle Scholar
  235. Murdoch, A.I.: A critique of atomistic definitions of the stress tensor. J. Elast. 88, 113 (2007)CrossRefGoogle Scholar
  236. Murdoch, A.I.: On molecular modelling and continuum concepts. J. Elast. 100, 33 (2010) et passimGoogle Scholar
  237. Myhrer, F., Thomas, A.W.: Understanding the proton’s spin structure. J. Phys. G 37, 023101 (2010)CrossRefGoogle Scholar
  238. Neuefeind, J. et al.: Experimental determination of the electron density of liquid H2O and D2O, J. Phys.: Condens. Matter 14, L429 (2002) et passimGoogle Scholar
  239. Ninham, B.W.: On progress in forces since the DLVO theory. Adv. Colloid Interface Sci. 83, 1 (1999)CrossRefGoogle Scholar
  240. Noll, W.: Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik. J. Rat. Mech. Anal. 4, 627 (1955)Google Scholar
  241. Noll, W.: There is an English translation in R.B. Lehoucq and A. Von Lilienfeld-Toal, Translation of Walter Noll’s “Derivation of the fundamental equations of continuum thermodynamics from statistical mechanics”. J. Elast. 100, 5 (2010)CrossRefGoogle Scholar
  242. Norton, P.R.: The EMC effect. Rep. Prog. Phys. 66, 1253 (2003) et passimGoogle Scholar
  243. Nugent, K.W. et al.: A precise low-temperature crystal structure of BeCp2. Aust. J. Chem. 37, 1601 (1984)CrossRefGoogle Scholar
  244. Nye, M.J.: From Chemical Philosophy to Theoretical Chemistry, Dynamics of Matter and Dynamics of Discipline 1800–1950. University of California Press, Berkeley and Los Angeles (1993)Google Scholar
  245. Nye, M.J.: A place in history: Was Linus Pauling a revolutionary chemist? Bull. Hist. Chem. 25, 73 (2000)Google Scholar
  246. Nye, M.J.: Philosopher-scientists at the interface of physics and chemistry: Paneth and Polanyi on chemistry as an exact science. In: Bertomeu-Sánchez, J.R., Burns, D.T., Van Tiggelen, B. (eds.) Proceedings of 6th International Conference on Histogram Chemistry. Mémosciences, Louvain-la-Neuve, Belgium, pp. 1630–172 (2008)Google Scholar
  247. Odagaki, Y., Dasgupta, S., Fuxe, K.: Additivity and non-additivity between dopamine-, norepinephrine-, carbachol- and GABA-stimulated GTPase activity. Eur. J. Pharm. 291, 245 (1995)CrossRefGoogle Scholar
  248. Ohtsuki, T., Hirose, K., Ohno, K.: Electron-capture decay rate of 7Be encapsulated in C60 cages, J. Nucl. Radiochem. Sci. 8, A1 (2007)Google Scholar
  249. Pais, A.: Max Born’s statistical interpretation of quantum mechanics. Science 218, 1193 (1982)CrossRefGoogle Scholar
  250. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Clarendon Press, Oxford (1989)Google Scholar
  251. Patel, P.M., Joshipura, K.N.: Differential and integral cross-sections of e − O2, O3, NO, CO scattering at energies 100–1000 eV. Pramana. J. Phys. 61, 685 (2003)CrossRefGoogle Scholar
  252. Patkowski, K., S̃pirko, V., Szalewicz, K.: On the elusive twelfth vibrational state of beryllium dimer. Science 326, 1382 (2009)CrossRefGoogle Scholar
  253. Pauli, W.: Über den Einfluß der Geschwindigkeitsabhängigkoit der Elektronenmasse auf den Zeemaneffekt. Z. Phys. 31, 373 (1925a)CrossRefGoogle Scholar
  254. Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765 (1925b)CrossRefGoogle Scholar
  255. Pauli, W.: Remarks on the history of the exclusion principle. Science 103, 213 (1946)CrossRefGoogle Scholar
  256. Pauling, L.: The shared-electron chemical bond. Proc. Natl. Acad. Sci. USA 14, 359 (1928)CrossRefGoogle Scholar
  257. Pauling, L.: The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367 (1931)Google Scholar
  258. Pauling, L.: The nature of the chemical bond. III. The transition from one extreme bond type to another. J. Am. Chem. Soc. 54, 988 (1932a)CrossRefGoogle Scholar
  259. Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570 (1932b)CrossRefGoogle Scholar
  260. Pauling, L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680 (1935)CrossRefGoogle Scholar
  261. Pauling, L.: Quantum theory and chemistry. In: Frank, W. (ed.) Max Planck Festschrift, pp. 385–388. Deutscher Verlag der Wissenschaften, Berlin (1959)Google Scholar
  262. Pauling, L.: The Nature of the Chemical Bond and the Structure of Molecules and Crystals, An Introduction to Modern Structural Chemistry, 3rd ed. Cornell University Press, Ithaca (1960)Google Scholar
  263. Pauling, L., Sherman, J.: The structure of the carboxyl group. II. The crystal structure of basic beryllium acetate. Proc. Natl. Acad. Sci. USA 20, 340 (1934)CrossRefGoogle Scholar
  264. Pauling, L., Wilson, E.B. Jr.: Introduction to Quantum Mechanics, With Applications to Chemistry. McGraw-Hill, New York (1935)Google Scholar
  265. Pauling, L., Yost, D.M.: The additivity of the energies of normal covalent bonds. Proc. Natl. Acad. Sci. USA 18, 414 (1932)CrossRefGoogle Scholar
  266. Peak, D. et al.: Evidence for complex, collective dynamics and emergent, distributed computation in plants. Proc. Natl. Acad. Sci. USA 101, 918 (2004)CrossRefGoogle Scholar
  267. Perl, M.L., Lee, E.R., Loomba, D.: Searches for fractionally charged particles. Ann. Rev. Nucl. Part. Sci. 59, 47 (2009)CrossRefGoogle Scholar
  268. Peters, N.: Flame calculations with reduced mechanisms—an outline. Lect. Notes Phys. m 15, 3 (1993)CrossRefGoogle Scholar
  269. Phillips, P.C.: Dielectric definition of electronegativity. Phys. Rev. Lett. 20, 550 (1968)CrossRefGoogle Scholar
  270. Pittet, P.-A. et al.: Tetrasolventoberyllium(II): High-pressure evidence for a sterically controlled solvent-exchange-mechanism crossover. Inorg. Chem. 29, 1936 (1990)CrossRefGoogle Scholar
  271. Pitzer, K.S.: Intermolecular and intramolecular forces and molecular polarizability. Adv. Chem. Phys. 2, 59 (1959)CrossRefGoogle Scholar
  272. Platts, J.A. et al.: First experimental characterization of a non-nuclear attractor in a dimeric magnesium(I) compound. J. Phys. Chem. A 115, 194 (2011)CrossRefGoogle Scholar
  273. Podgornik, R., French, R.H., Parsegian, V.A.: Nonadditivity in van der Waals interactions within multilayers. J. Chem. Phys. 124, 044709 (2006)CrossRefGoogle Scholar
  274. Polanyi, M.: Life’s irreducible structure. Science 160, 1308 (1968)CrossRefGoogle Scholar
  275. Pólya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145 (1937)CrossRefGoogle Scholar
  276. Pólya, G., Read, R.C.: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds. Springer, New York (1987)CrossRefGoogle Scholar
  277. Preuss, W.: Calculation of adiabatic energy surfaces for molecules using the method of atomic associations. Rev. Mod. Phys. 35, 646 (1963)CrossRefGoogle Scholar
  278. Primas, H.: Chemistry, Quantum Mechanics, and Reductionism, 2nd ed. Springer, New York (1983)CrossRefGoogle Scholar
  279. Primas, H.: Can we reduce chemistry to physics? In: Radnitzky, G. (ed.) Centripetal Forces in the Sciences, vol. 2, pp. 119–133. Paragon House Publishers, New York (1988)Google Scholar
  280. Primas, H.: Emergence in exact natural sciences. Acta Polytech. Scand. Ma 91, 83 (1998)Google Scholar
  281. Probst, M.M., Spohr, E., Heinzinger, K.: On the hydration of the beryllium ion. Chem. Phys. Lett. 161, 405 (1989)CrossRefGoogle Scholar
  282. Probst, M.M., Spohr, E., Heinzinger, K.: A molecular dynamics simulation of an aqueous beryllium chloride solution. Mol. Sim. 7, 43 (1991)CrossRefGoogle Scholar
  283. Quigg, C., Rosner, J.L.: Quantum mechanics with applications to quarkonium. Phys. Rep. 56, 167 (1979)CrossRefGoogle Scholar
  284. Quinkert, G. et al.: Chemistry and biology—historical and philosophical aspects. In: Schreiber, S.L., Kapoor, T.M., Wess, G. (eds.) Chemical Biology, From Small Molecules to System Biology and Drug Design, pp. 3–67. Wiley-VCH, Weinheim (2007)Google Scholar
  285. Raj, D.: A note on the use of the additivity rule for electron—molecule elastic scattering. Phys. Lett. A 160, 571 (1991)CrossRefGoogle Scholar
  286. Raj, D.: Total cross sections for positron scattering by molecules. Phys. Lett. A 174, 304 (1993)CrossRefGoogle Scholar
  287. Ray, S.G., Daube, S.S., Naaman, R.: On the capturing of low-energy electrons by DNA. Proc. Natl. Acad. Sci. USA 102, 15 (2005)CrossRefGoogle Scholar
  288. Rayón, V.M., Frenking, G.: Structures, bond energies, heats of formation, and quantitative bonding analysis of main-group metallocenes E(Cp)2. (E=Be–Ba, Zn, Si–Pb) and E(Cp). (E=Li–Cs, B–Tl). Chem. Eur. J. 8, 4693 (2002)CrossRefGoogle Scholar
  289. Riess, J., Münch, W.: The theorem of Hohenberg and Kohn for subdomains of a quantum system. Theor. Chim. Acta 58, 295 (1981)CrossRefGoogle Scholar
  290. Rocke, A.J.: Kekulé, Butlerov, and the historiography of the theory of chemical structure. Brit. J. Hist. Sci. 14, 27 (1981)CrossRefGoogle Scholar
  291. Ross, M.: Evidence for nonadditivity of nucleon moments in heavy nuclei. Phys. Rev. 88 (1952)Google Scholar
  292. Ross, J., Schreiber, I., Vlad, M.O.: Determination of Complex Reaction Mechanisms, Analysis of Chemical, Biological, and Genetic Networks. Oxford University Press, New York (2006)Google Scholar
  293. Rudolph, W.W. et al.: Hydration of beryllium(II) in aqueous solutions of common inorganic salts. A combined vibrational spectroscopic and ab initio molecular orbital study. Dalton Trans. 6513 (2009)Google Scholar
  294. Russell, C.A.: The History of Valency. Leicester University Press, Leicester, UK (1971)Google Scholar
  295. Rutherford, E., Chadwick, J., Ellis, C.D.: Radiations from Radioactive Substances, p. 8. Cambridge University Press, London (1930)Google Scholar
  296. Sachs, R.G., Ross, M.: Evidence for non-additivity of nucleon moments. Phys. Rev. 84, 379 (1951)CrossRefGoogle Scholar
  297. Sanche, L.: Low energy electron-driven damage in biomolecules, Eur. Phys. J. D 35, 367 (2005) et passimGoogle Scholar
  298. Sarukkai, S.: Revisiting the ‘unreasonable effectiveness’ of mathematics. Curr. Sci. 88, 415 (2005)Google Scholar
  299. Scarani, V. et al.: Quantum cloning, Rev. Mod. Phys. 77, 1225 (2005) et passimGoogle Scholar
  300. Scerri, E.: Reduction and emergence in chemistry. Phil. Sci. 74, 920 (2007)CrossRefGoogle Scholar
  301. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555 (1935)CrossRefGoogle Scholar
  302. Schrödinger, E.: The present situation in quantum mechanics. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton, NJ (1983)Google Scholar
  303. Schummer, J.: The philosophy of chemistry. Endeavour 27, 37 (2003)CrossRefGoogle Scholar
  304. Schwartz, J.: The pernicious influence of mathematics on science. In: Nagel, E., Suppes, P., Tarski, A. (eds.) Logic, Methodology and Philosophy of Science, pp. 356–360. Stanford University Press, Stanford (1962)Google Scholar
  305. Schwinger, J.: The theory of quantized fields. I.. Phys. Rev. 82, 914 (1951)CrossRefGoogle Scholar
  306. Schwinger, J.: The theory of quantized fields. II. Phys. Rev. 91, 713 (1953)CrossRefGoogle Scholar
  307. Schwinger, J.: Gauge invariance and mass. Phys. Rev. 128, 2425 (1962)CrossRefGoogle Scholar
  308. Seely, J. et al. [JLab Collaboration]: New measurements of the European Muon collaboration effect in very light nuclei. Phys. Rev. Lett. 103, 202301 (2009)Google Scholar
  309. Segrè, E.: Possibility of altering the decay rate of a radioactive substance. Phys. Rev. 71, 274 (1947)CrossRefGoogle Scholar
  310. Segrè, E., Wiegard, C.: Experiments on the effect of atomic electrons on the decay constant of 7Be. Phys. Rev. 75, 39 (1949)CrossRefGoogle Scholar
  311. Shaik, S., Hiberty, P.C.: A Chemist’s Guide to Valence Bond Theory. Wiley, Hoboken, NJ (2008)Google Scholar
  312. Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar
  313. Shi, D.-H. et al.: Additivity rule for electron-molecule total cross section calculations at 50–5,000 eV: a new geometrical approach. Chin. Phys. B 17, 2103 (2008)CrossRefGoogle Scholar
  314. Silberstein, L.: Molecular refractivity and atomic interaction. Phil. Mag. 33, 92 (1917a)Google Scholar
  315. Silberstein, L.: Molecular refractivity and atomic interaction II. Phil. Mag. 33, 215 (1917b)Google Scholar
  316. Silberstein, L.: Dispersion and the size of molecules of hydrogen, oxygen, and nitrogen. Phil. Mag. 33, 521 (1917c)Google Scholar
  317. Silvestrelli, P.L., Parrinello, M.: Water molecule dipole in the gas and in the liquid phase. Phys. Rev. Lett. 82, 3308 (1999a)CrossRefGoogle Scholar
  318. Silvestrelli, P.L., Parrinello, M.: Structural, electronic, and bonding properties of liquid water from first principles. J. Chem. Phys. 111, 3572 (1999b)CrossRefGoogle Scholar
  319. Simons, J.: How very low-energy (0.1–2 eV) electrons cause DNA strand breaks. Adv. Quantum Chem. 52, 171 (2007)CrossRefGoogle Scholar
  320. Slater, J.C.: Directed valence in polyatomic molecules. Phys. Rev. 37, 481 (1931a)CrossRefGoogle Scholar
  321. Slater, J.C.: Molecular energy levels and valence bonds. Phys. Rev. 38, 1109 (1931b)CrossRefGoogle Scholar
  322. Smirnov, P.R., Trostin, V.N.: Structural parameters of hydration of Be2+ and Mg2+ ions in aqueous solutions of their salts. Rus. J. Gen. Chem. 78, 1643 (2008) et passimGoogle Scholar
  323. Smith, D.A. (ed.): Modeling the Hydrogen Bond: Symposium, vol. 569. American Chemical Society, Washington, DC (1994)Google Scholar
  324. Steiner, M.: The Applicability of Mathematics as a Philosophical Problem. Harvard University Press, Cambridge, MA (1998)Google Scholar
  325. Stranges, A.N.: Electrons and Valence, Development of the Theory, 1900–1925. Texas A & M University Press, College Station (1982)Google Scholar
  326. Sun, J., Jiang, Y., Wan, L.: Total cross sections for electron scattering by molecules. Phys. Lett. A 195, 81 (1994)CrossRefGoogle Scholar
  327. Sutcliffe, B.T., Woolley, R.G.: Molecular structure calculations without clamping the nuclei. Phys. Chem. Chem. Phys . 7, 3664 (2005) et passimGoogle Scholar
  328. Sylvester, J.J.: On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics,—with three appendices. Am. J. Math. 1, 64 (1878)CrossRefGoogle Scholar
  329. Symanzik, K.: Infrared singularities and small-distance-behaviour analysis. Commun. Math. Phys. 34, 7 (1973)CrossRefGoogle Scholar
  330. Thoma, M.H., Nolte, E.: Limits on small violations of the Pauli exclusion principle in the primordial nucleosynthesis. Phys. Lett. B 291, 484 (1992)CrossRefGoogle Scholar
  331. Thomas, G.F.: On the global variance in the 1-reduced local energy matrix for closed shell fermion systems. Phys. Lett A 94, 265 (1983)CrossRefGoogle Scholar
  332. Thomas, G.F.: On the minimization of the global variance in the 1-reduced local-energy matrix. Int. J. Quantum Chem. 29, 867 (1986)CrossRefGoogle Scholar
  333. Thomas, G.F., Barber, D.H.: Stiffness in radioactive decay chains. Ann. Nucl. Energy 21, 309 (1994)CrossRefGoogle Scholar
  334. Thomson, J.J.: Some further applications of the method of positive rays. Phil. Mag. 23, 449 (1912)Google Scholar
  335. Tielrooij, K.J. et al.: Cooperativity in ion hydration. Science 328, 1006 (2010) et passimGoogle Scholar
  336. Tukey, J.W.: One degree of freedom for non-additivity, Biometrics 5, 232 (1949)Google Scholar
  337. Tukey, J.W.: Discussion of ‘the role of statistical graduate training’. In: Rustagi, J.S., Wolfe, D.A. (eds.) Teaching of Statistics and Statistical Consulting, pp. 379–389. Academic Press, New York (1982)Google Scholar
  338. Tulinsky, A., Worthington, C.R.: Basic beryllium acetate. Part II. The structure analysis. Acta Cryst. 12, 626 (1959)CrossRefGoogle Scholar
  339. van Brakel, J.: Philosophy of Chemistry. Leuven University Press, Leuven (2000)Google Scholar
  340. Van Vechten, J.A.: Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys. Rev. 182, 891 (1969a)CrossRefGoogle Scholar
  341. Van Vechten, J.A.: Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Phys. Rev. 187, 1007 (1969b)CrossRefGoogle Scholar
  342. Vitorge, P., Masella, M.: A theoretical study of [Be,(H2O)n]2+: [BeOH,(H2O)n-1]+ and [Be(OH)2,(H2O)n-2] aggregates (n = 1–6). Incidence of the first hydration shells on the hydrolysis reactions of Be2+ and BeOH+ systems. Chem. Phys. Lett. 332, 367 (2000)CrossRefGoogle Scholar
  343. von Nieseen, W.: A theory of molecules in molecules. I.. J. Chem. Phys. 55, 1948 (1971)CrossRefGoogle Scholar
  344. von Sonntag, C.: Free-Radical-Induced DNA Damage and Its Repair. A Chemical Perspective. Springer, Berlin (2006)Google Scholar
  345. von Weizsäcker, C.F.: Zur Theorie der Kernmassen. Z. Phys. 96, 431 (1935)CrossRefGoogle Scholar
  346. Voytek, S.B., Joyce, G.F.: Niche partitioning in the coevolution of 2 distinct RNA enzymes. Proc. Natl. Acad. Sci. USA 106, 7780 (2009)CrossRefGoogle Scholar
  347. Weinberg, S.: Effective gauge theories. Phys. Lett. B 91, 51 (1980)CrossRefGoogle Scholar
  348. Weinberg, S.: The Quantum Theory of Fields, Vol. 1, Foundations. Cambridge University Press, New York (1995)Google Scholar
  349. Weinberg, S.: The Quantum Theory of Fields, vol. 2, Modern Applications. Cambridge University Press, New York (1996)Google Scholar
  350. Weinstein, H., Pauncz, R., Cohen, M.: Localized molecular orbitals. Adv. At. Mol. Phys. 7, 97 (1971)CrossRefGoogle Scholar
  351. Wigner, E.P.: The limits of science. Proc. Am. Phil. Soc. 94, 422 (1950)Google Scholar
  352. Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13, 1 (1960)CrossRefGoogle Scholar
  353. Wigner, E.P.: The probability of the existence of a self-reproducing unit. In: The Logic of Personal Knowledge, Essays Presented to Michael Polanyi on his Seventieth Birthday, pp. 231–238. Routledge & Kegan Paul, London (1961)Google Scholar
  354. Wilkinson, D.H.: Future prospects in the QCD era. For how long will the shell model last? Nucl. Phys. A 507, 281 (1990)CrossRefGoogle Scholar
  355. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)CrossRefGoogle Scholar
  356. Yamaguchi, T. et al.: Molecular dynamics and X-ray diffraction study of aqueous beryllium(II) chloride solutions. Z. Naturforsch. A 41, 1175 (1986)Google Scholar
  357. Zecca, A. et al.: Additivity rule for electron-molecule cross section calculation: a geometrical approach. Phys. Lett. A 257, 75 (1999)CrossRefGoogle Scholar
  358. Zecca, A., Karwasz, G.P., Brusa, R.S.: One century of experiments on electron-atom and molecule scattering: a critical review of integral cross-sections. I.—Atoms and diatomic molecules. Riv. Nuovo Cimento 19, 1 (1996)Google Scholar
  359. Zewail, A.H.: Femtochemistry—Ultrafast Dynamics of the Chemical Bond. WSP, Singapore (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.MINOS Technologies Inc.TorontoCanada

Personalised recommendations