Foundations of Chemistry

, Volume 13, Issue 2, pp 131–143

Do the solvolysis reactions of secondary substrates occur by the SN1 or SN2 mechanism: or something else?



Primary and methyl aliphatic halides and tosylates undergo substitution reactions with nucleophiles in one step by the classic SN2 mechanism, which is characterized by second-order kinetics and inversion of configuration at the reaction center. Tertiary aliphatic halides and tosylates undergo substitution reactions with nucleophiles in two (or more) steps by the classic SN1 mechanism, which is characterized by first-order kinetics and incomplete inversion of configuration at the reaction center due to the presence of ion pairs. When the nucleophile is also the solvent, the substitution reaction is called a solvolysis, and both the SN2 and SN1 reactions now obey first-order kinetics. Schleyer and Bentley have provided solid, but not conclusive, evidence that secondary substrates undergo solvolysis by a merged mechanism, one that blends characteristics of both the SN2 and SN1 mechanisms. The following paper presents the history of their sustained pursuit of a merged mechanism and subsequent rebuttals to this claim. Several issues related to the philosophy and sociology of science are also discussed.


Solvolysis reaction SN1 reaction SN2 reaction Two-step mechanism One-step mechanism Ion pairing Merged mechanism Solvent ionizing power Solvent nucleophilicity 2-Adamantyl substrates Kinetics α secondary isotope effects Secondary substrates Nucleophilic solvent assistance SN2 (intermediate) 


  1. Abenson, P.H.: Trends in scientific research. Science 143(3603), 218–223 (1964)CrossRefGoogle Scholar
  2. Allen, A.D., Ambidge, I.C., Tidwell, T.T.: Stereochemistry of trifluoroacetolysis of optically active 2-Butyl Tosylate. A test for hydrogen bridging. J. Org. Chem. 48, 4527–4530 (1983)CrossRefGoogle Scholar
  3. Allen, A.D., Kanagasabapathy, V.M., Tidwell, T.T.: Solvolysis of 1-Arylethyl Tosylates. Kinetic and stereochemical tests for solvent participation. J. Am. Chem. Soc. 107, 4513–4519 (1985)CrossRefGoogle Scholar
  4. Anslyn, E.V., Dougherty, D.A.: Modern physical organic chemistry. University Science Books, Sausalito, CA (2006)Google Scholar
  5. Bentley, T.W., Bowen, C.T., Morten, D.H., Schleyer, P., Von, R.: The SN2-SN1 Spectrum. 3. Solvolyses of secondary and tertiary alkyl sulfonates in fluorinated alcohols. Further evidence for the SN2 (Intermediate) mechanism. J. Am. Chem. Soc. 103, 5466–5475 (1981)CrossRefGoogle Scholar
  6. Bentley, T.W., Carter, G.E.: The SN2-SN1 Spectrum. 4. The SN2 (Intermediate) mechanism of tert-Butyl Chloride: A revised Y scale of solvent ionizing power based on solvolysis of 1-Adamantyl Chloride. J. Am. Chem. Soc. 104, 5741–5747 (1982)CrossRefGoogle Scholar
  7. Bentley, T.W., Schleyer, P., Von, R.: The SN2-SN1 Spectrum. 1. Role of nucleophilic solvent assistance and nucleophilically solvated ion pair intermediates in solvolyses of primary and secondary Arenesulfonates. J. Am. Chem. Soc. 98, 7658–7666 (1976)CrossRefGoogle Scholar
  8. Bentley, T.W., Schleyer, P., Von, R.: Medium effects on the rates and mechanisms of solvolytic reactions. In: Gold, V., Bethell, D. (eds.) Advances in physical organic chemistry, vol. 14, pp. 1–67. Academic Press, New York (1977)Google Scholar
  9. Biale, G., Parker, A.J., Smith, S.G., Stevens, I.D.R., Winstein, S.: E2C mechanism in elimination reactions. Absence of an extreme form of merged mechanism for elimination and substitution. Comparison of Saytzeff versus Hofmann Tendencies and of Anti versus Syn Elimination. J. Am. Chem. Soc. 92, 115–122 (1970)CrossRefGoogle Scholar
  10. Bunting, J.W.: Merged mechanisms for hydride transfer from 1, 4-Dihydronicotinamides. Biorg. Chem. 19, 456–491 (1991)CrossRefGoogle Scholar
  11. Crane, D.: Fashions in science—Does it exist? Soc. Prob. 16, 433–441 (1969)CrossRefGoogle Scholar
  12. Dannenberg, J.J., Goldberg, B.J., Barton, J.K., Dill, K., Weinwurzel, D.H., Longas, M.O.: The 2-Butyl Cation in Trifluoroacetic Acid. A hydrogen-bridged carbonium ion. J. Am. Chem. Soc. 103, 7764–7768 (1981)CrossRefGoogle Scholar
  13. Diaz, A.F., Lazdins, L., Winstein, S.: Oxygen-18 scrambling in solvolyses of simple unactivated alkyl Arenesulfonates. J. Am. Chem. Soc. 90, 1904–1905 (1968)CrossRefGoogle Scholar
  14. Eliel, E.L., Ro, R.S.: Example of merged bimolecular substitution and elimination. Tetrahedron 2, 353–354 (1958)CrossRefGoogle Scholar
  15. Fainberg, A.H., Winstein, S.: Correlation of solvolysis data. III. t-Butyl Chloride in a wide range of solvent mixtures. J. Am. Chem. Soc. 78, 2770–2777 (1956)CrossRefGoogle Scholar
  16. Grunwald, E., Winstein, S.: The correlation of solvolysis rates. J. Am. Chem. Soc. 70, 846–854 (1948)CrossRefGoogle Scholar
  17. Guthrie, R.D., Jencks, W.P.: IUPAC recommendations for the representation of reaction mechanims. Acc. Chem. Res. 22, 343–349 (1989)CrossRefGoogle Scholar
  18. Hagstrom, W.O.: Production of culture in science. Am. Behav. Scie. 19, 753–768 (1976)CrossRefGoogle Scholar
  19. Hammett, L.P.: The effect of structure on the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59, 96–103 (1937)CrossRefGoogle Scholar
  20. Hoffmann, R., Minkin, V.I., Carpenter, B.K.: Ockham’s Razor and chemistry. Bull. Chim. Soc. Fr. 133, 117–130 (1996)Google Scholar
  21. Hoffmann, R., Minkin, V.I., Carpenter, B.K.: Ockham’s Razor and chemistry. HYLE 3, 3–28 (1997)Google Scholar
  22. Katritzky, A.R.: The mechanisms of nucleophilic substitution in aliphatic compounds. Chem. Soc. Rev. 19, 83–105 (1990)CrossRefGoogle Scholar
  23. McLennan, D.J.: A neutral nucleophilic probe of borderline kinetic in the 2-Octyl Mesylate-Urea Reaction. Tetrahedron Lett. 16, 4689–4692 (1975)CrossRefGoogle Scholar
  24. Milton Harris, J., Raber, D.J., Hall, R.E., Schleyer, P., Von, R.: Solvent assistance in the solvolysis of secondary substrates. The use of added Azide Ion as a mechanistic probe. J. Am. Chem. Soc. 92, 5729–5731 (1970)CrossRefGoogle Scholar
  25. Milton Harris, J., Hall, R.E., Schleyer, P., Von, R.: The magnitude of secondary α-Deuterium isotope effects for limiting solvolses. J. Am. Chem. Soc. 93, 2551–2553 (1971)CrossRefGoogle Scholar
  26. Okuno, Y.: A cluster model of ion pair formation of t-BuCl in aqueous solution: calculations evidence for nucleophilic solvent assistance in SN1 Reaction. J. Phys. Chem. A 103, 190–196 (1999)CrossRefGoogle Scholar
  27. Paradisi, C., Bunnett, J.F.: Strong dependence of the incidence of internal return during sovolysis of sec-Alkyl Benzenesulfonates on the structure of the alkyl group. J. Am. Chem. Soc. 103, 946–948 (1981)CrossRefGoogle Scholar
  28. Reichardt, C.: Solvents and solvent effects in organic chemistry (3rd ed.). Wiley-VCH. Weinheim, Germany (2003)Google Scholar
  29. Richard, J.P., Jencks, W.P.: Concerted Bimolecular Substitution Reactions of 1-Phenylethyl Derivatives. J. Am. Chem. Soc. 106, 1383–1396 (1984)CrossRefGoogle Scholar
  30. San Filippo Jr, J., Romano, L.J.: A convenient preparation of optically active 2-Halooctanes and related compound. J. Org. Chem. 40, 1514–1515 (1975)CrossRefGoogle Scholar
  31. Schadt, F.L., Schleyer, P., von, R., Bentley, T.W.: Hexafluoroisopropanol—a solvent of high ionizing power and low nucleophilicity. Tetrahedron Lett. 15, 2335–2338 (1974)CrossRefGoogle Scholar
  32. Schadt, F.L., Bentley, T.W., Schleyer, P., von, R.: The SN2-SN1 Spectrum. 2. Quantitative treatments of nucleophilic solvent assistance. A scale of solvent nucleophilcities. J. Am. Chem. Soc. 98, 7667–7674 (1976)CrossRefGoogle Scholar
  33. Schleyer, P., Von, R.: A simple preparation of Adamantane. J. Am Chem. Soc. 79, 3292 (1957)Google Scholar
  34. Schleyer, P., Von, R., Nichols, R.D.: The preparation and reactivity of 2-substituted derivatives of Adamantane. J. Am. Chem. Soc. 83, 182–187 (1961)Google Scholar
  35. Shiner Jr., V.J., Fisher, P., Dowd, W.: Enhancement of solvolysis rates by Wagner-Meerwein rearrangements of ion pairs. J. Am. Chem. Soc. 91, 7748–7749 (1969)CrossRefGoogle Scholar
  36. Sneen, R.A., Larsen, J.W.: Identification of an ion-pair intermediate in an SN2 reaction. J. Am. Chem. Soc. 88, 2593–2594 (1966)CrossRefGoogle Scholar
  37. Sneen, R.A., Larsen, J.W.: Substitution at a saturated carbon. X. Unification of mechanisms for SN1 or SN2. J. Am. Chem. Soc. 91, 362–366 (1969)CrossRefGoogle Scholar
  38. Sober, E.: Simplicity. In a companion to the philosophy of science (Newton-Smith, W. H. ed.). Blackwell, Malden, MA (2001), pp 433–441Google Scholar
  39. Streitwieser, A.: Solvolytic displacement reactions. McGraw-Hill, New York (1962)Google Scholar
  40. Ziman, J.M.: The problem of “Problem Choice”. Minerva 25, 92–106 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TennesseeKnoxvilleUSA

Personalised recommendations