Foundations of Chemistry

, Volume 13, Issue 1, pp 51–61

Early impact of quantum physics on chemistry: George Hevesy’s work on rare earth elements and Michael Polanyi’s absorption theory

Article
  • 110 Downloads

Abstract

After Heitler and London published their pioneering work on the application of quantum mechanics to chemistry in 1927, it became an almost unquestioned dogma that chemistry would soon disappear as a discipline of its own rights. Reductionism felt victorious in the hope of analytically describing the chemical bond and the structure of molecules. The old quantum theory has already produced a widely applied model for the structure of atoms and the explanation of the periodic system. This paper will show two examples of the entry of quantum physics into more classical fields of chemistry: inorganic chemistry and physical chemistry. Due to their professional networking, George Hevesy and Michael Polanyi found their ways to Niels Bohr and Fritz London, respectively, to cooperate in solving together some problems of classical chemistry. Their works on rare earth elements and adsorption theory throws light to the application of quantum physics outside the reductionist areas. They support the heuristic and persuasive value of quantum thinking in the 1920–1930s. Looking at Polanyi’s later oeuvre, his experience with adsorption theory could be a starting point of his non-justificationist philosophy.

Keywords

Reductionism Michael Polanyi George Hevesy Periodic system Quantum physics Theoretical chemistry 

References

  1. Bohr, N.: The structure of the atom, (Nobel Lecture, 11 December 1922.) In: Nobel Lectures, Physics, 1922–1941. Elsevier Publishing Company, Amsterdam (1965)Google Scholar
  2. Bohr, N.: On the constitution of atoms and molecules. In: Rosenfeld, L. (ed.) Papers of 1913 reprinted from the Philosophical Magazine, with an introduction Munksgaard: Copenhagen/W.A. Benjamin: New York (1963)Google Scholar
  3. Cockroft, J.D.: George de Hevesy 1885–1966. Biogr. Mem. Fellows R.Soc. 13, 125–166 (1967)CrossRefGoogle Scholar
  4. Encyclopedia Britannica http://www.britannica.com/nobelprize/article-80831 Accessed 8 Mar 2011
  5. Coster, D., Hevesy, G.: On the new element hafnium. Nature 111, 182 and 252 (1923)Google Scholar
  6. Dirac, P.A.M.: Quantum mechanics of many electron systems. Proc. R. Soc. Lond. A123, 714–733 (1929)Google Scholar
  7. Eisenschitz, R., London, F.:“Über das Verhaltnis der van der Waalsschenkräfte zu den homoopolaren Bindungskräften.” Z. Phys. 60, 491 (1930)Google Scholar
  8. Erdey-Gruz, T., Schay, G.: Elméleti Fizikai Kémia. (Theoretical Physical Chemistry),: Tankönyvkiado, Budapest (1952–1954), 4 edn, vol. 2 (1964)Google Scholar
  9. Fleming, D.: Émigré physicists and the biological revolution. In: Fleming, D., Bailyn, B. (eds.) The Intellectual Migration: Europe and America, 1930–1960, pp. 152–189. Harvard University Press, Cambridge, MA (1969)Google Scholar
  10. Gavroglu, K., Simões, A.: The Americans, the Germans, and the beginnings of quantum chemistry: The confluence of diverging traditions. Hist. Stud. Phys. Biol. Sci. 25(1), 47–110 (1994)Google Scholar
  11. Gieryn, T.: Cultural Boundaries: of Science: Credibility on the Line. Chicago University Press. Chicago, London (1999)Google Scholar
  12. Heitler, W., London, F.: Wechselwirkung neutraler Atome und homöopolare Bindung nach der Qauntenmechanik. Z. Phys. 44, 455–472 (1927)CrossRefGoogle Scholar
  13. Hevesy, G.: Das Element Hafnium. Springer, Berlin (1927)Google Scholar
  14. Kragh, H.: Anatomy of a priority conflict: The case of element 72. Centaurus 23, 275–301 (1980)CrossRefGoogle Scholar
  15. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  16. Langmuir, I.: Surface chemistry. Nobel Lecture, 14 December 1932. http://nobelprize.org/nobel_prizes/chemistry/laureates/1932/langmuir-lecture.pdf Assesed 12 March 2011
  17. London, F., Polanyi, M.: Über die atomtheoretische Deutung der Adsorptionskräfte. Naturwissenschaften 18, 1099–1100 (1930)CrossRefGoogle Scholar
  18. London, F.: Properties and applications of molecular force. Z. Phys. Chem. B 11, 222–251 (1930a)Google Scholar
  19. London, F.: Theorie und Systematik der Molekularkräfte. Z. Phys. 63, 245–279 (1930b)CrossRefGoogle Scholar
  20. Melhado, E.M.: Chemistry, physics, and the chemical revolution. Isis 76, 195–211 (1985)CrossRefGoogle Scholar
  21. Navarro, L.: On Einstein’s statistical-mechanical approach to the early quantum theory (1904–1916). Hist. Scient. 1, 39–58 (1991)Google Scholar
  22. Nernst, W.: Theoretische chemie vom standpunkte der avogadroschen regel und der thermodynamik, 1st edn. Verlag von Ferdinand Enke, Stuttgart (1893)Google Scholar
  23. Niesse, S.: Georg von Hevesy: Wissenschaftler ohne Grenzen. Forschungszentrum Rossendorf, Dresden (2005)Google Scholar
  24. Nye, M.J.: From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics Of Disciplines, 1800–1950. University of California Press, Berkley, Los Angeles, London (1993)Google Scholar
  25. Nye, M.J.: At the boundaries: Michael Polanyi’s work on surfaces and the solid state. In: Reinhardt, C. (ed.) Chemical Sciences in the 20th Century. Wiley-VCH, Weinheim (2001)Google Scholar
  26. Nye, M.J.: Michael Polanyi’s theory of surface adsorption: How premature? In: Hooke, E.B. (ed.) Prematurity in Scientific Discovery: On Resistance and Neglect, pp. 151–164. University of California Press, Berkeley (2002)Google Scholar
  27. Nye, M.J.: Historical source of science-as-a-social-practice: Michael Polanyi in Berlin. Hist. Stud. Phys. Biol. Sci. 37(2), 409–434 (2007)CrossRefGoogle Scholar
  28. Park, B.S.: A principle written in diagrams: The Aufbau principle for molecules and its visual representations. 1927–1932. In: Klein, U. (ed.) Tools and Modes of Representation in the Laboratory Sciences, pp. 179–198. Kluwer Academic Publishers, Dordrecht, Boston, London (2001)Google Scholar
  29. Park, B. S.: Computational Imperatives in Quantum Chemistry. Paper presented at the HQ-1 conference, 2–6 July 2007, Berlin. http://quantum-history.mpiwg-berlin.mpg.de/eLibrary/hq1_talks/chemistry/28_park (2007). Accessed 8 March 2011
  30. Polanyi, M.: Adsorption, Quellung und osmotischen Druck von Kolloiden. Biochem. Z. 66, 258–268 (1914a)Google Scholar
  31. Polanyi, M.: Über die Adsorption vom Standpunkt des dritten Wärmesatzes. Verh. Dtsch. Phys. Ges. 16, 1012–1016 (1914b)Google Scholar
  32. Polanyi, M.: Über Adsorption und Kapillarität vom Standpunkte des II. Hauptsatzes. Z. Phys. Chem. 88, 622–631 (1914c)Google Scholar
  33. Polanyi, M.: Adsorption von Gasen (Dampfen) durch ein festes nichtflüssiges Adsorbens. Verh. Dtsch. Phys. Ges. 18, 55–80 (1916)Google Scholar
  34. Polanyi, M.: Personal knowledge. Routledge and Kegan Paul, London (1958). Chicago University Press, Chicago (1958)Google Scholar
  35. Polányi, M.: Gázok (gőzök) adsorbtiója szilárd, nem illanó adsorbensen. (The adsorption of gases and dumps on solid adsorbents.) Doktori disszertáció. (PhD Theses) Budapest (1917)Google Scholar
  36. Polanyi, M.: The potential theory of adsorption. Science 141, 1010–1013 (1963)CrossRefGoogle Scholar
  37. Popper, K.: The Open Universe. Hutchinson, London (1982)Google Scholar
  38. Popper, K.: The Logic of Scientific Discovery. Hutchinson, London (1959)Google Scholar
  39. Scerri, E.: Prediction of the nature of hafnium from chemistry: Bohr’s theory and quantum theory. Ann. Sci. 51, 137–150 (1994)CrossRefGoogle Scholar
  40. Scerri, E.: Popper’s naturalized approach to the reduction of chemistry. Int. Stud. Phil. Sci. 12, 33–44 (1998)CrossRefGoogle Scholar
  41. Schrödinger, E.: What is Life?. Cambridge University Press, Cambridge (1944)Google Scholar
  42. Scott, W.T., Martin, X., Moleski, M.X.: Michael Polanyi: Scientist and Philosopher. Oxford University Press, Oxford (2005)CrossRefGoogle Scholar
  43. Simões, A.: Chemical physics and quantum chemistry in the twentieth century. In: Nye, M.J. (ed.) The Modern Physical and Mathematical Sciences. The Cambridge History of Science, vol. 5, pp. 394–412. Cambridge University Press, Cambridge (2003)Google Scholar
  44. Simões, A., Gavroglu, K.: Issues in the history of theoretical and quantum chemistry, 1927–1960. In: Reinhardt, C. (ed.) Chemical Sciences in the 20th Century, pp. 51–74. Wiley-VCH, Weinheim (2001)CrossRefGoogle Scholar
  45. Szabadváry, F.: The history of the discovery and separation of the rare earths. In: Gschneider, K.A., Eyring Jr, L. (eds.) Handbook of the Physics and Chemistry of Rare Earths, vol. 11, pp. 33–80. Elsevier Science Publisher, Amsterdam (1988)Google Scholar
  46. Thyssen, P., Binnemans, K.: Accommodation of the rare earths in the periodic table: A historical analysis. In: Gschneidner, K.A. (ed.) Handbook on the Physics and Chemistry of Rare Earths, vol. 41, pp. 1–94. Academic Press, Burlington (2011)Google Scholar
  47. Wigner, E.P., Hodgkin, R.A.: Michael Polanyi, 12 March 1891–1822 February, 1976. Biogr. Mem. Fellows R. Soc. 23, 412–448 (1977)Google Scholar
  48. Wolfram, E.: Kolloidika. (Colloid Chemistry. Lecture notes for chemistry students of the Eötvös Lorand University): Tankönyvkiado, Budapest (1965)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for Research Organization, Hungarian Academy of SciencesBudapestHungary
  2. 2.BudapestHungary

Personalised recommendations