# Heisenberg’s chemical legacy: resonance and the chemical bond

- 244 Downloads
- 3 Citations

## Abstract

Heisenberg’s explanation of how two coupled oscillators exchange energy represented a dramatic success for his new matrix mechanics. As matrix mechanics transmuted into wave mechanics, resulting in what Heisenberg himself described as “…an extraordinary broadening and enrichment of the formalism of the quantum theory”, the term resonance also experienced a corresponding evolution. Heitler and London’s seminal application of wave mechanics to explain the quantum origins of the covalent bond, combined with Pauling’s characterization of the effect, introduced resonance into the chemical lexicon. As the Valence Bond approach gave way to a soon-to-be dominant Molecular Orbital method, our understanding of the term resonance, as it might apply to our understanding the chemical bond, has also changed.

## Keywords

Resonance Chemical bond Valence bond Molecular orbital Quantum chemistry## Notes

### Acknowledgments

The author is grateful to the Educational Advancement Foundation (EAF) and the W. M. Keck Foundation grant for their generous support, and also the Welch Foundation (Grant # BH-0018) for its continuing support of the Chemistry Department at St. Edward’s University. The author also wishes to acknowledge the contributions of Brian Healy, whose commitment to the intellectual process served as a catalyst for this formulation.

## References

- Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics
**1**, 195–200 (1964)Google Scholar - Bloch, F.: Heisenberg and the early days of quantum mechanics. Phys. Today
**29**, 23–27 (1976)CrossRefGoogle Scholar - Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**48**, 696–702 (1935)CrossRefGoogle Scholar - Brush, S.G.: Dynamics of theory change in chemistry: part 2. Benxene and molecular orbitals, 1945–1980. Stud Hist Phil Sci
**30**, 263–302 (1999)CrossRefGoogle Scholar - Dewar, M.J.S., Longuet-Higgins, H.C.: The correspondance between the resonance and molecular orbital theories. Proc Roy Soc
**214**, 482–493 (1952)CrossRefGoogle Scholar - Dirac, P.: The physical interpretation of the quantum dynamics. Proc. Roy. Soc. Lond.
**A113**, 621–641 (1927)Google Scholar - Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**47**, 777–780 (1935)CrossRefGoogle Scholar - Frankland, E.: Contributions to the notation of organic and inorganic compounds. J. Chem. Soc.
**19**, 372–395 (1866)CrossRefGoogle Scholar - Gavroglu, K.: Fritz London: A Scientific Biography, p. 85. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
- Healy, E.F.: In defense of a heuristic interpretation of quantum mechanics. J. Chem. Educ.
**87**, 559–563 (2010)CrossRefGoogle Scholar - Heisenberg, W.: Multi-body problem and resonance in the quantum mechanics. Zeitschrift für Physik
**38**, 411–426 (1926)CrossRefGoogle Scholar - Heitler, W., London, F.: Interaction between neutral atoms and homopolar bonding.
*Zeitschrift für Physik***44**, 455 (1927) English translation in Hettema, H. “Quantum Chemistry, Classic Scientific Papers”, World Scientific, Singapore (2000)Google Scholar - Huckel, E.: Quantum-theoretical contributions to the benzene problem. I. The electron configuration of benzene and related compounds. Zeitschrift für Physik
**70**, 204–286 (1931)CrossRefGoogle Scholar - Hund, F.: Zur Frage der chemischen Bindung. Zeitschrift für Physik
**73**, 1–30 (1931)CrossRefGoogle Scholar - Jordan, P.: Uber eine neue Begr¨undung der Quantenmechamik I. Zeitschrift für Physik
**40**, 809 (1926)CrossRefGoogle Scholar - Kerber, R.C.: If it’s resonance, what is resonating? J. Chem. Educ.
**83**, 223–227 (2006)CrossRefGoogle Scholar - Lennard-Jones, J.E.: The electronic structure of some diatomic molecules. Trans. Faraday Soc.
**25**, 668–686 (1929)CrossRefGoogle Scholar - London, F.: On the quantum theory of homo-polar valence numbers.
*Zeitschrift für Physik***46***,*455 (1928) English translation in Hettema, H. “Quantum Chemistry, Classic Scientific Papers”, World Scientific, Singapore (2000)Google Scholar - Malrieu, J.-P., Guihery, N., Calzado, C.J., Angeli, C.: Bond electron pair: its relevance and analysis from the quantum chemistry point of view. J. Comput. Chem.
**28**, 35–50 (2007)CrossRefGoogle Scholar - Mulliken, R.S.: The assignment of quantum numbers for electrons in molecule. Phys. Rev.
**32**, 186–228 (1928)CrossRefGoogle Scholar - Mulliken, R.S.: Selected Papers, ed. D.A. Ramsay, J. Hinze (University of Chicago Press), p. 8 (1975)Google Scholar
- Pauling, L.: Shared-electron chemical bond. Proc. Natl. Acad. Sci.
**14**, 359–362 (1928)CrossRefGoogle Scholar - Pauling, L.: The theory of resonance in chemistry. Proc. R. Soc. Lond. A.
**356**, 433–441 (1977)CrossRefGoogle Scholar - Pauling, L.: The nature of the chemical bond–1992. J. Chem. Educ.
**69**, 519–521 (1992)CrossRefGoogle Scholar - Ruedenberg, K.: The physical nature of the chemical bond. Rev. Mod. Phys.
**34**, 326–376 (1962)CrossRefGoogle Scholar - Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev.
**28**, 1049–1070 (1926)CrossRefGoogle Scholar - Schrödinger, E.: The present situation in quantum mechanics.
*Naturwissenschaften*,**23**, 807–812; 823–828; 844–849 (1935) English translation “Quantum Theory and Measurement”, eds. Wheeler, J.A., Zurek, W.H., Princeton Univ. Press (Princeton, NJ, 1983)Google Scholar - Shaik, S.: Is my chemical universe localized or delocalized? Is there a future for chemical concepts? New J. Chem.
**31**, 2015–2028 (2007)CrossRefGoogle Scholar - Slater, J.C.: The theory of complex spectra. Phys. Rev.
**34**, 1293–1312 (1929)Google Scholar - Wheland, G.W., Pauling, L.: A quantum mechanical discussion of orientation of substituents in aromatic molecules. J. Am. Chem. Soc.
**57**, 2086–2095 (1935)CrossRefGoogle Scholar - Wheland, G.W.: Resonance in Organic Chemistry, pp. 7, 75. Wiley, New York (1955)Google Scholar
- Vermulapalli, G.K.: Theories of the chemical bond and its true nature. Found. Chem.
**10**, 167–176 (2008)CrossRefGoogle Scholar