Foundations of Chemistry

, Volume 13, Issue 1, pp 39–49 | Cite as

Heisenberg’s chemical legacy: resonance and the chemical bond

  • Eamonn F. Healy


Heisenberg’s explanation of how two coupled oscillators exchange energy represented a dramatic success for his new matrix mechanics. As matrix mechanics transmuted into wave mechanics, resulting in what Heisenberg himself described as “…an extraordinary broadening and enrichment of the formalism of the quantum theory”, the term resonance also experienced a corresponding evolution. Heitler and London’s seminal application of wave mechanics to explain the quantum origins of the covalent bond, combined with Pauling’s characterization of the effect, introduced resonance into the chemical lexicon. As the Valence Bond approach gave way to a soon-to-be dominant Molecular Orbital method, our understanding of the term resonance, as it might apply to our understanding the chemical bond, has also changed.


Resonance Chemical bond Valence bond Molecular orbital Quantum chemistry 



The author is grateful to the Educational Advancement Foundation (EAF) and the W. M. Keck Foundation grant for their generous support, and also the Welch Foundation (Grant # BH-0018) for its continuing support of the Chemistry Department at St. Edward’s University. The author also wishes to acknowledge the contributions of Brian Healy, whose commitment to the intellectual process served as a catalyst for this formulation.


  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  2. Bloch, F.: Heisenberg and the early days of quantum mechanics. Phys. Today 29, 23–27 (1976)CrossRefGoogle Scholar
  3. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)CrossRefGoogle Scholar
  4. Brush, S.G.: Dynamics of theory change in chemistry: part 2. Benxene and molecular orbitals, 1945–1980. Stud Hist Phil Sci 30, 263–302 (1999)CrossRefGoogle Scholar
  5. Dewar, M.J.S., Longuet-Higgins, H.C.: The correspondance between the resonance and molecular orbital theories. Proc Roy Soc 214, 482–493 (1952)CrossRefGoogle Scholar
  6. Dirac, P.: The physical interpretation of the quantum dynamics. Proc. Roy. Soc. Lond. A113, 621–641 (1927)Google Scholar
  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefGoogle Scholar
  8. Frankland, E.: Contributions to the notation of organic and inorganic compounds. J. Chem. Soc. 19, 372–395 (1866)CrossRefGoogle Scholar
  9. Gavroglu, K.: Fritz London: A Scientific Biography, p. 85. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  10. Healy, E.F.: In defense of a heuristic interpretation of quantum mechanics. J. Chem. Educ. 87, 559–563 (2010)CrossRefGoogle Scholar
  11. Heisenberg, W.: Multi-body problem and resonance in the quantum mechanics. Zeitschrift für Physik 38, 411–426 (1926)CrossRefGoogle Scholar
  12. Heitler, W., London, F.: Interaction between neutral atoms and homopolar bonding. Zeitschrift für Physik 44, 455 (1927) English translation in Hettema, H. “Quantum Chemistry, Classic Scientific Papers”, World Scientific, Singapore (2000)Google Scholar
  13. Huckel, E.: Quantum-theoretical contributions to the benzene problem. I. The electron configuration of benzene and related compounds. Zeitschrift für Physik 70, 204–286 (1931)CrossRefGoogle Scholar
  14. Hund, F.: Zur Frage der chemischen Bindung. Zeitschrift für Physik 73, 1–30 (1931)CrossRefGoogle Scholar
  15. Jordan, P.: Uber eine neue Begr¨undung der Quantenmechamik I. Zeitschrift für Physik 40, 809 (1926)CrossRefGoogle Scholar
  16. Kerber, R.C.: If it’s resonance, what is resonating? J. Chem. Educ. 83, 223–227 (2006)CrossRefGoogle Scholar
  17. Lennard-Jones, J.E.: The electronic structure of some diatomic molecules. Trans. Faraday Soc. 25, 668–686 (1929)CrossRefGoogle Scholar
  18. London, F.: On the quantum theory of homo-polar valence numbers. Zeitschrift für Physik 46 , 455 (1928) English translation in Hettema, H. “Quantum Chemistry, Classic Scientific Papers”, World Scientific, Singapore (2000)Google Scholar
  19. Malrieu, J.-P., Guihery, N., Calzado, C.J., Angeli, C.: Bond electron pair: its relevance and analysis from the quantum chemistry point of view. J. Comput. Chem. 28, 35–50 (2007)CrossRefGoogle Scholar
  20. Mulliken, R.S.: The assignment of quantum numbers for electrons in molecule. Phys. Rev. 32, 186–228 (1928)CrossRefGoogle Scholar
  21. Mulliken, R.S.: Selected Papers, ed. D.A. Ramsay, J. Hinze (University of Chicago Press), p. 8 (1975)Google Scholar
  22. Pauling, L.: Shared-electron chemical bond. Proc. Natl. Acad. Sci. 14, 359–362 (1928)CrossRefGoogle Scholar
  23. Pauling, L.: The theory of resonance in chemistry. Proc. R. Soc. Lond. A. 356, 433–441 (1977)CrossRefGoogle Scholar
  24. Pauling, L.: The nature of the chemical bond–1992. J. Chem. Educ. 69, 519–521 (1992)CrossRefGoogle Scholar
  25. Ruedenberg, K.: The physical nature of the chemical bond. Rev. Mod. Phys. 34, 326–376 (1962)CrossRefGoogle Scholar
  26. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)CrossRefGoogle Scholar
  27. Schrödinger, E.: The present situation in quantum mechanics. Naturwissenschaften, 23, 807–812; 823–828; 844–849 (1935) English translation “Quantum Theory and Measurement”, eds. Wheeler, J.A., Zurek, W.H., Princeton Univ. Press (Princeton, NJ, 1983)Google Scholar
  28. Shaik, S.: Is my chemical universe localized or delocalized? Is there a future for chemical concepts? New J. Chem. 31, 2015–2028 (2007)CrossRefGoogle Scholar
  29. Slater, J.C.: The theory of complex spectra. Phys. Rev. 34, 1293–1312 (1929)Google Scholar
  30. Wheland, G.W., Pauling, L.: A quantum mechanical discussion of orientation of substituents in aromatic molecules. J. Am. Chem. Soc. 57, 2086–2095 (1935)CrossRefGoogle Scholar
  31. Wheland, G.W.: Resonance in Organic Chemistry, pp. 7, 75. Wiley, New York (1955)Google Scholar
  32. Vermulapalli, G.K.: Theories of the chemical bond and its true nature. Found. Chem. 10, 167–176 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistrySt. Edward’s UniversityAustinUSA

Personalised recommendations