Foundations of Chemistry

, Volume 12, Issue 1, pp 69–83 | Cite as

Explaining the periodic table, and the role of chemical triads

  • Eric ScerriEmail author


Some recent work in mathematical chemistry is discussed. It is claimed that quantum mechanics does not provide a conclusive means of classifying certain elements like hydrogen and helium into their appropriate groups. An alternative approach using atomic number triads is proposed and the validity of this approach is defended in the light of some predictions made via an information theoretic approach that suggests a connection between nuclear structure and electronic structure of atoms.


Chemistry Quantum mechanics Periodic table Information theory Chemical triads 



The author thanks reviewers for the careful reading of this paper and for many useful suggestions.


  1. Atkins, P.W., Kaesz, H.: The placement of hydrogen in the periodic table. Chem. Int. 25, 14 (2003)Google Scholar
  2. Bensaude-Vincent, B.: Mendeleev’s periodic system of chemical elements. Br. J. Hist. Sci. 19, 3–17 (1986)CrossRefGoogle Scholar
  3. Bent, H.A.: New Ideas in Chemistry from Fresh Energy for the Periodic Law. Author House, Bloomington (2006)Google Scholar
  4. Bent, H.A., Weinhold, F.: News from the periodic table: an introduction to periodicity symbols, tables, and models for higher-order valency and donor–acceptor kinships. J. Chem. Educ. 84, 1145–1146 (2007)CrossRefGoogle Scholar
  5. Bogaard, P.A.: The limitations of physics as a chemical reducing agent. Proc. Philos. Sci. Assoc., (PSA 1978) 2, 345–356 (1978)Google Scholar
  6. Bonchev, D.: Periodicity of the chemical elements and nuclides: an information-theoretic analysis. In: Rouvray, D.H., King, R.B. (eds.) The Mathematics of the Periodic Table, pp. 161–188. Nova Science Publishers, New York (2006)Google Scholar
  7. Carbo-Dorca, R.D.: On the extension of quantum similarity to atomic nuclei. J. Math. Chem. 23, 327–351 (1998)CrossRefGoogle Scholar
  8. Carbo-Dorca, R.D.: General trends in atomic and nuclear quantum similarity measures. Int. J. Quantum Chem. 77, 685–692 (2000)CrossRefGoogle Scholar
  9. Clark, R.W., White, G.D.: The flyleaf periodic table. J. Chem. Educ. 85, 497 (2008)CrossRefGoogle Scholar
  10. Cronyn, M.W.: The proper place for hydrogen in the periodic table. J. Chem. Educ. 80, 947–951 (2003)CrossRefGoogle Scholar
  11. Döbereiner, J.: Versuch zu einer gruppirung der elementaren stoffe nach ihrer analogie. Poggendorf’s Ann. Phys. Chem. (Leipzig) 15, 301–307 (1829)Google Scholar
  12. Earley, J.: Why there is no salt in the sea. Found. Chem. 7, 85–102 (2005)CrossRefGoogle Scholar
  13. Earley, J.: How chemistry shifts horizons: element, substance, and the essential. Found. Chem. 11, 67–77 (2009)CrossRefGoogle Scholar
  14. Goeppert Mayer, M., Jensen, H.: Elementary Theory of Nuclear Shell Structure. Wiley, New York (1955)Google Scholar
  15. Hendry, R.F.: Lavoisier and Mendeleev on the elements. Found. Chem. 7, 31–48 (2005)CrossRefGoogle Scholar
  16. Hendry, R.F.: Entry for “chemistry”. In: Psillos, S., Curd, M. (eds.) The Routledge Companion to Philosophy of Science, pp. 520–530. Routledge, London (2008)Google Scholar
  17. Ibrahim, S.A.: Predicting the atomic weights of the trans-lawrencium elements: a novel application of Dobereiner’s triads. J. Chem. Educ. 82, 1658–1659 (2005)CrossRefGoogle Scholar
  18. Janet, C.: La Classification hélicoïdale des éléments chimiques. Imprimerie Départmentale de l’Oise, Bauvais (1928)Google Scholar
  19. Jensen, W.B.: The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. J. Chem. Educ. 59, 634–636 (1982)CrossRefGoogle Scholar
  20. Kibler, M.: The periodic system of chemical elements, old and new perspectives. J. Chem. Struct. (Theochem) 187, 83–93 (1989)CrossRefGoogle Scholar
  21. Kibler, M.: From the Mendeleev table to particle physics and back. Found. Chem. 11, 221–234 (2007)CrossRefGoogle Scholar
  22. Laing, M.: Where to put hydrogen in a periodic table? Found. Chem. 9, 127–137 (2007)CrossRefGoogle Scholar
  23. Lakatos, I.: The Methodology of Scientific Research Programmes: vol. 1, Philosophical Papers. In: Worrall, J., Currie, G. (eds.), pp. 43, 53–55, 118–119, 223. Cambridge University Press, Cambridge (1980)Google Scholar
  24. Lavelle, L.: Lanthanum (La) and actinium (Ac) should remain in the d-block. J. Chem. Educ. 85, 1482–1483 (2008)CrossRefGoogle Scholar
  25. Montgomery, J.P.: Dobereiner’s triads and atomic numbers. J. Chem. Educ. 8, 162 (1931)CrossRefGoogle Scholar
  26. Novaro, O.: Comments on the group theoretical justification of the aufbau scheme. Int. J. Quantum Chem. (Symposium) 7, 23–33 (1973)Google Scholar
  27. Ostrovsky, V.: On recent discussion concerning quantum justification of the periodic table of the elements. Found. Chem. 7, 235–239 (2005)CrossRefGoogle Scholar
  28. Ramsey, J.: Chemistry. In: Pfeifer, J., Sarkar, S. (eds.) Philosophy of Science, an Encyclopedia. Routledge, London (2006)Google Scholar
  29. Restrepo, G., Pachón, L.: Mathematical aspects of the periodic law. Found. Chem. 9, 189–214 (2007)CrossRefGoogle Scholar
  30. Rouseva, B., Bonchev, D.: Prediction of the nuclear binding energies of the nuclides of period VII. Radiochem. Radioanal. Lett. 45, 341–346 (1980)Google Scholar
  31. Ruthenberg, K.: Paneth, Kant and the philosophy of chemistry. Found. Chem. 11, 65–77 (2009)CrossRefGoogle Scholar
  32. Sacks, L.: Concerning the position of hydrogen in the periodic table. Found. Chem. 8, 31–35 (2006)CrossRefGoogle Scholar
  33. Scerri, E.R.: Has chemistry been approximately reduced to quantum mechanics. Proc. Philos. Sci. Assoc. (PSA), Hull, D., Forbes, M., Burian, R. (eds.), 160–170 (1994)Google Scholar
  34. Scerri, E.R.: The Periodic Table, Its Story and Its Significance. Oxford University Press, New York (2007)Google Scholar
  35. Scerri, E.R.: The Role of triads in the evolution of the periodic system. J. Chem. Educ. 85, 585–589 (2008a)CrossRefGoogle Scholar
  36. Scerri, E.R.: The past and future of the periodic table. Am. Sci. 96, 52–58 (2008b)Google Scholar
  37. Scerri, E.R.: The dual sense of the term ‘element’, attempts to derive the Madelung rule, and the optimal form of the periodic table, if any. Int. J. Quantum Chem. 109, 959–971 (2008c)CrossRefGoogle Scholar
  38. Scerri, E.R.: Which elements belong in group 3? J. Chem. Educ. 86, 1188 (2009)CrossRefGoogle Scholar
  39. Scerri, E.R., Kreinovich, V., Wojciechowski, P., Yager, R.R.: Ordinal explanation of the periodic system of chemical elements. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6, 387–400 (1998)CrossRefGoogle Scholar
  40. Schwarz, W.H.E.: Recommended questions on the road towards a scientific explanation of the periodic system of chemical elements with the help of the concepts of quantum physics. Found. Chem. 9, 139–188 (2007)CrossRefGoogle Scholar
  41. Schwarz, W.H.E.: Review of Eric Scerri, the periodic system, its story and its significance. Angew. Chem. Int. Ed. 48, 3391–3392 (2009)CrossRefGoogle Scholar
  42. Service, R.: Does life’s handedness come from within? Science 286, 1282–1283 (1999)CrossRefGoogle Scholar
  43. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). (623–656)Google Scholar
  44. Shapere, D.: Scientific theories and their domains. In: Suppe, F. (ed.) The Structure of Scientific Theories, pp. 518–599. Illinois University Press, Chicago (1974)Google Scholar
  45. Sneath, P.H.A.: Numerical classification of the elements and its relation to the periodic system. Found. Chem. 2(3), 237–263 (2000)CrossRefGoogle Scholar
  46. Stewart, P.: Charles Janet: unrecognized genius of the periodic table. Found. Chem. 12 (2010). doi: 10.1007/s10698-008-9062-5
  47. Weisberg, M.: Who is a modeler? Br. J. Philos. Sci. 58, 207–233 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryUCLALos AngelesUSA

Personalised recommendations