Foundations of Chemistry

, Volume 12, Issue 1, pp 5–15 | Cite as

Charles Janet: unrecognized genius of the periodic system

Article

Abstract

Janet is known almost exclusively for his left-step periodic table (LSPT). A study of his writings shows him to have been a highly creative thinker and a brilliant draftsman. His approach was primarily arithmetic-geometric, but it led him to anticipate the discovery of deuterium, helium-3, transuranian elements, antimatter and energy from nuclear fusion. He recognized the (n + ℓ) rule well before Madelung and correctly placed the actinides. His controversial treatment of helium at the head of the alkaline earth elements might be less provocative if his system were taken in one of its spiral representations.

Keywords

Janet Periodic system Tables Spiral representations Antimatter Madelung rule 

References

  1. Bent, H.A.: New ideas in chemistry from fresh energy for the periodic law. Author House, Bloomington, IN (2006)Google Scholar
  2. Bohr, N.H.D.: Der Bau der Atome und die physikalischen und chemischen Eigenschaften der Elemente. Z. Phys. 9, 1–67 (1922a)CrossRefGoogle Scholar
  3. Bohr, N.H.D.: The theory of spectra and atomic constitution: three essays. (Essay III). Cambridge University Press, Cambridge (1922b)Google Scholar
  4. Burbidge, E.M., et al.: (‘BBFH’): synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–654 (1957)CrossRefGoogle Scholar
  5. Casson, L.: Notice biographique sur la vie et de l’oeuvre de Charles Janet. Bull. Soc. Acad. de l’Oise. 232, Beauvais (2008)Google Scholar
  6. Emerson, B.K.: Helix chemica: a study of the periodic relations of the elements and their graphic representation. Am. Chem. J. 45, 160–210 (1911)Google Scholar
  7. Janet, C.: Revendications à propos de ses dessins de zoologie empruntés par d’autres auteurs. Imprimerie Ducourtiaux. Limoges (1923)Google Scholar
  8. Janet, C.: Essai de schématisation de la structure des noyaux atomiques. Imprimerie Départementale de l’Oise, Beauvais (1927a)Google Scholar
  9. Janet, C.: La structure du noyau de l’atome. considérée dans la classification périodique des Eléments Chimiques. Imprimerie Départementale de l’Oise, Beauvais (1927b)Google Scholar
  10. Janet, C.: Essais de classification hélicoïdale des éléments chimiques. Imprimerie Départementale de l’Oise, Beauvais (1928a)Google Scholar
  11. Janet, C.: La classification hélicoïdale des éléments chimiques. Imprimerie Départementale de l’Oise, Beauvais (1928b)Google Scholar
  12. Janet, C.: The helicoidal classification of the elements. Chem. News 138, 372–374, 388–393 (1929a)Google Scholar
  13. Janet, C.: Considérations sur la structure du noyau de l’atome. considérée dans la classification périodique des Eléments Chimiques. Imprimerie Départementale de l’Oise, Beauvais (1929b)Google Scholar
  14. Janet, C.: Concordance de l’arrangement quantique de base des électrons planétaires des atomes avec la classification scalariforme. hélicoïdale des elements chimiques. Beauvais Imprimerie Départementale de l’Oise, Beauvais (1930)Google Scholar
  15. Janet, C.: La classification hélicoïdale des éléments chimiques: résumé des travaux de Janet Charles. Savoir (1.3.1931)Google Scholar
  16. Jensen, W.B. (ed.): Mendeleev on the Periodic Law: Selected Writings, 1869–1905. University of Cincinnati, Cincinnati (2002)Google Scholar
  17. Katz, G.: The periodic table: an eight-period table for the 21st Century. Chem. Educ. 6, 324–332 (2001)CrossRefGoogle Scholar
  18. Mazurs, E.G.: Graphic Representations of the Periodic System During One Hundred Years. University of Alabama Press, Alabama (1974)Google Scholar
  19. Monroe, C.J., Turner, W.D.: A new periodic table of the elements. J. Chem. Educ. 3, 1058–1065 (1926)CrossRefGoogle Scholar
  20. Ostrovsky, V.N.: The periodic table and quantum physics. In: Rouvray, H., King, R.B. (eds.) The Periodic Table: into the 21st Century, pp. 331–337. Research Studies Press, Baldock (2004)Google Scholar
  21. Rydberg, J.R.: Recherches sur le système des éléments. J. Chim. Phys. 12, 585–639 (1914)Google Scholar
  22. Scerri, E.R.: Presenting the left-step periodic table. Educ. Chem. 42, 135–136 (2005)Google Scholar
  23. Scerri, E.R.: The periodic table: its story and its significance. Oxford University Press, Oxford (2007)Google Scholar
  24. Scerri, E.R.: The role of triads in the evolution of the Periodic Table: past and present. J. Chem. Educ. 85, 585–589 (2008)CrossRefGoogle Scholar
  25. Schaltenbrand, G.: Darstellung des periodischen Systems durch eine räumliche Spirale. Z. anorg. allg. Chem. 112, 221–224 (1920)CrossRefGoogle Scholar
  26. Simmons, L.M.: A modification of the periodic table. J. Chem. Educ. 24, 588–591 (1947)CrossRefGoogle Scholar
  27. Simmons, L.M.: Display of electronic configuration by a periodic table. J. Chem. Educ. 25, 658–661 (1948)CrossRefGoogle Scholar
  28. Stedman, D.F.: A periodic arrangement of the elements. Can. J. Res. Ser. B 29, 199–210 (1947)Google Scholar
  29. Stewart, P.J.: A century on from Dmitrii Mendeleev: tables and spirals, noble gases and Nobel Prize. Found. Chem. 9, 235–245 (2007)CrossRefGoogle Scholar
  30. Stoner, E.C.: The distribution of electrons among atomic levels. Philos. Mag. (6th series) 48, 719–736 (1924)CrossRefGoogle Scholar
  31. Tsimmerman, V.: ADOMAH periodic table. http://perfectperiodictable.com/ (2007). Accessed 1 Sept 2008
  32. von Antropoff, A.: Eine neue Form des periodischen Systems der Elementen. Z. angew. Chem. 39, 722–725 (1926)CrossRefGoogle Scholar
  33. van Spronsen, J.W.: The Periodic System of Chemical Elements. Elsevier, Amsterdam (1969)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations