The chemist’s concept of molecular structure

Article

Abstract

The concept of molecular structure is fundamental to the practice and understanding of chemistry, but the meaning of this term has evolved and is still evolving. The Born–Oppenheimer separation of electronic and nuclear motions lies at the heart of most modern quantum chemical models of molecular structure. While this separation introduces a great computational and practical simplification, it is neither essential to the conceptual formulation of molecular structure nor universally valid. Going beyond the Born–Oppenheimer approximation introduces new paradigms, bringing fresh insight into the chemistry of fluxional molecules, proteins, superconductors and macroscopic dielectrics, thus opening up new avenues for exploration. But it requires that our ideas of molecular structure need to evolve beyond simple ball-and-stick-type models.

Keywords

Molecular structure Born–Oppenheimer approximation Jahn–Teller molecules Protein structure Atoms in molecules Geometric phase Molecular similarity 

References

  1. Ackeroyd, M.: Explanation of the atomic theory 1865–1895. International Society for the Philosophy of Chemistry Summer Symposium, Knoxville, TN (2005)Google Scholar
  2. Agrafiotis, D.K., Bandyopadhyay, D., et al.: Recent advances in cheminformatics. J. Chem. Inf. Model 47(4), 1279–1293 (2007)CrossRefGoogle Scholar
  3. Bader, R.F.W.: Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule. J. Chem. Phys. 73(6), 2871–2883 (1980)CrossRefGoogle Scholar
  4. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Clarendon, Oxford (1990)Google Scholar
  5. Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91(5), 893–928 (1991)CrossRefGoogle Scholar
  6. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Clarendon, Oxford (1995)Google Scholar
  7. Bader, R.F.W.: 1997 Polanyi award lecture. Why are there atoms in chemistry? Can. J. Chem. 76(7), 973–988 (1998a)CrossRefGoogle Scholar
  8. Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102(37), 7314–7323 (1998b)CrossRefGoogle Scholar
  9. Bader, R.F.W., Srebrenik, S., et al.: Subspace quantum dynamics and the quantum action principle. J. Chem. Phys. 68(8), 3580–3591 (1978)CrossRefGoogle Scholar
  10. Bader, R.F.W., Anderson, S.G., et al.: Quantum topology of molecular charge distributions 1. J. Am. Chem. Soc. 101(6), 1389–1395 (1979a)CrossRefGoogle Scholar
  11. Bader, R.F.W., Nguyen-Dang, T.T., et al.: Quantum topology of molecular charge distributions. II. Molecular structure and its change. J. Chem. Phys. 70, 4316–4329 (1979b)CrossRefGoogle Scholar
  12. Bader, R.F.W., Nguyen-Dang, T.T., et al.: A topological theory of molecular structure. Rep. Prog. Phys. 44, 893–948 (1981)CrossRefGoogle Scholar
  13. Bader, R.F.W., Popelier, P.L.A., et al.: Theoretical definition of a functional group and the molecular orbital paradigm. Angew. Chem. Int. Ed. Engl. 33, 620–631 (1994)CrossRefGoogle Scholar
  14. Batista, J., Bajorath, J.: Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations. J. Chem. Inf. Model 47, 59–68 (2007)CrossRefGoogle Scholar
  15. Bender, A., Jenkins, J.L., et al.: Molecular similarity: advances in methods, applications, and validations in virtual screening and QSAR. Ann. Rep. Comp. Chem. 2, 141–168 (2006)CrossRefGoogle Scholar
  16. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)CrossRefGoogle Scholar
  17. Born, M.: Zur Quantentheorie der Molekeln. Nachr. Akad. Goettingen. Math. Physik. Kl. 6, 1 (1951)Google Scholar
  18. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1954)Google Scholar
  19. Born, M., Oppenheimer, J.R.: Kopplung der Elektronen- und Kernbewegung in Molekeln und Kristallen. Ann. Phys. 84, 457 (1927)Google Scholar
  20. Breneman, C.M., Sundling, C.M., et al.: New developments in PEST shape/property hybrid descriptors. J. Comput. Aided Mol. Des. 17, 231–240 (2003)CrossRefGoogle Scholar
  21. Brown, T.L.: Making Truth: Metaphor in Science. University Illinois Press, Urbana (2003a)Google Scholar
  22. Brown, T.L.: The metaphorical foundations of chemical explanation. Ann. NY Acad. Sci. 988, 209–216 (2003b)Google Scholar
  23. Carbo-Dorca, R., Robert, D., et al.: Molecular Quantum Similarity in QSAR and Drug Design. Springer-Verlag, Berlin (2000)Google Scholar
  24. Coulson, C.A.: Tilden Lecture. The Chemical Society, Burlington House (1951)Google Scholar
  25. Coulson, C.A.: The contributions of wave mechanics to chemistry. J. Chem. Soc. 2069–2084 (1955). doi: 10.1039/JR9550002069
  26. Delacretaz, G., Grant, E.R., et al.: Fractional quantization of molecular pseudorotation in Na3. Phys. Rev. Lett. 56, 2598–2601 (1986)CrossRefGoogle Scholar
  27. Early, J.E.: Why there is no salt in the sea. Found. Chem. 7, 85–102 (2005)CrossRefGoogle Scholar
  28. Eberhart, M.: Quantum mechanics and molecular design in the twenty-first century. Found. Chem. 4, 201–211 (2002)CrossRefGoogle Scholar
  29. Essén, H.: The physics of the Born-Oppenheimer approximation. Int. J. Quantum Chem. 12, 721–735 (1977)CrossRefGoogle Scholar
  30. Essén, H.: Kinematic and dynamic partitionings of the energy: coordinate and other transformations. In: Hinze, J. (ed.) Energy Storage and Redistribution in Molecules, pp. 327. Plenum, New York (1983)Google Scholar
  31. Giere, R.N.: No representation without representation. Biol. Philos. 9, 113–120 (1994)CrossRefGoogle Scholar
  32. Gonze, X., Ghosez, P., et al.: Density functional theory of polar insulators. Phys. Rev. Lett. 78(2), 294–297 (1997)CrossRefGoogle Scholar
  33. Hansch, C., Muir, R.M., et al.: The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. Chem. Soc. 85, 2817–2824 (1963)CrossRefGoogle Scholar
  34. Herzberg, G., Longuet-Higgins, H.C.: Intersection of potential energy surfaces in polyatomic molecules. Discuss. Faraday Soc. 35, 77–82 (1963)CrossRefGoogle Scholar
  35. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)CrossRefGoogle Scholar
  36. Hoshino, M., Nakai, H.: Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory: application of Møller-Plesset perturbation theory. J. Chem. Phys. 124, 194110 (2006)CrossRefGoogle Scholar
  37. Konarski, J.: Diatomic molecule as a soft body. J. Mol. Spectrosc. 124(1), 218–228 (1987)CrossRefGoogle Scholar
  38. Konarski, J.: Rovibrational states of a linear molecule. J. Mol. Struct. 270, 491–498 (1992)CrossRefGoogle Scholar
  39. Konarski, J.: A new model of a molecule based on the soft body. Int. J. Quantum Chem. 51, 439–445 (1994)CrossRefGoogle Scholar
  40. Lakoff, G.: The contemporary theory of metaphor. In: Metaphor and thought. A. Cambridge University Press, Ortony, Cambridge (1993)Google Scholar
  41. Lathouwers, L., VanLeuven, P.: Molecular spectra and the generator coordinate method. Int. J. Quantum Chem. 12S, 371–375 (1978)Google Scholar
  42. Lathouwers, L., VanLeuven, P., et al.: Quantum theory and molecular spectra. Chem. Phys. Lett. 52(3), 439–441 (1977)CrossRefGoogle Scholar
  43. Longuet-Higgins, H.C.: The intersection of potential energy surfaces in polyatomic molecules. Proc. Roy. Soc. Lond. A 344, 147 (1975)CrossRefGoogle Scholar
  44. Löwdin, P.-O.: On nuclear motion and the definition of molecular structure. J. Mol. Struct. (THEOCHEM) 230, 13–15 (1991)CrossRefGoogle Scholar
  45. Martin, R.M.: Functional theory of extended Coulomb systems. Phys. Rev. B 56(3), 1124–1140 (1997)CrossRefGoogle Scholar
  46. Matta, C., Boyd, R.J. (eds.): The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley-VCH, Weinheim (2007)Google Scholar
  47. Mead, C.A., Truhlar, D.G.: On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70, 2284–2296 (1979)CrossRefGoogle Scholar
  48. Mezei, M.: A novel fingerprint for the characterization of protein folds. Protein Eng. 16, 713–715 (2003)CrossRefGoogle Scholar
  49. Nakai, H.: Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation: Ab initio NO + MO/HF theory. Int. J. Quantum Chem. 86, 511–517 (2002)CrossRefGoogle Scholar
  50. Nakai, H., Hoshino, M., et al.: Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. J. Chem. Phys. 122, 164101 (2005)CrossRefGoogle Scholar
  51. Ortiz, G., Martin, R.M.: Macroscopic polarization as a geometric quantum phase: many-body formalism. Phys. Rev. B 49(20), 14202–14210 (1994)CrossRefGoogle Scholar
  52. Ostrovsky, V.: Towards a philosophy of approximations in the ‘exact’ sciences. HYLE 11(2), 101–126 (2005)Google Scholar
  53. Reiher, M.: The systems-theoretical view of chemical concepts. Found. Chem. 5, 147–163 (2003)CrossRefGoogle Scholar
  54. Resta, R.: Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66(3), 899–915 (1994)CrossRefGoogle Scholar
  55. Resta, R.: Quantum-mechanical position operator in extended systems. Phys. Rev. Lett. 80, 1800–1803 (1998)CrossRefGoogle Scholar
  56. Schonbrun, J., Dill, K.A.: Fast protein folding kinetics. Proc. Natl. Acad. Sci. U.S.A. 100(22), 12678–12682 (2003)CrossRefGoogle Scholar
  57. Schwinger, J.: The theory of quantized fields. I. Phys. Rev. 82, 914 (1951)CrossRefGoogle Scholar
  58. Shahbazian, S., Zahedi, M.: The role of observables and non-observables in chemistry: a critique of chemical language. Found. Chem. 8, 37–52 (2006)CrossRefGoogle Scholar
  59. Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989)Google Scholar
  60. Sims, G.E., Kim, S.H.: A method for evaluating the structural quality of protein models by using higher-order ϕ–ψ pairs scoring. Proc. Natl. Acad. Sci. U.S.A. 102(12), 618–621 (2005)CrossRefGoogle Scholar
  61. Smith, C.S.: A Search for Structure. MIT Press, Cambridge (1981)Google Scholar
  62. Stein, R.L.: A process theory of enzyme catalytic power—the interplay of science and metaphysics. Found. Chem. 8, 3–29 (2006)CrossRefGoogle Scholar
  63. Sukumar, N.: Born Couplings in H2+, H2 and H3. Chemistry. Stony Brook, State University of Stony Brook. Ph. D (1984)Google Scholar
  64. Sukumar, N.: Density functional theory for Jahn–Teller systems. Int. J. Quantum Chem. 52, 809–816 (1994)CrossRefGoogle Scholar
  65. Sukumar, N.: Density functional theory of Born couplings. Int. J. Quantum Chem. 56, 423–432 (1995)CrossRefGoogle Scholar
  66. Sukumar, N., Breneman, C.M.: QTAIM in drug discovery. In: Matta, C., Boyd, D. (eds.) Quantum Theory of Atoms in Molecules. Wiley-VCH, Weinheim (2006)Google Scholar
  67. Sutcliffe, B.T.: The chemical bond and molecular structure. J. Mol. Struct. (THEOCHEM) 259, 29–58 (1992)CrossRefGoogle Scholar
  68. Thomas, I.L.: Protonic structure of molecules. I. Ammonia molecules. Phys. Rev. 185, 90 (1969)CrossRefGoogle Scholar
  69. Thomas, I.L.: Selection rules and the protonic spectrum of molecules. Phys. Rev. A 2, 72 (1970a)CrossRefGoogle Scholar
  70. Thomas, I.L.: Stark and Zeeman effects on the protonic structure of molecules. Phys. Rev. A 2, 1675 (1970b)CrossRefGoogle Scholar
  71. Thomas, I.L.: Vibrational and rotational energy levels as protonic structure in molecules. Phys. Rev. A 3, 565 (1971)CrossRefGoogle Scholar
  72. Thomas, I.L.: Photoprotonic effect in hydrides. Phys. Rev. A 5, 1972 (1972)Google Scholar
  73. Thomas, I.L., Joy, H.W.: Protonic structure of molecules. II. Methodology, center-of-mass transformation and the structure of methane, ammonia and water. Phys. Rev. A 2, 1200 (1970)CrossRefGoogle Scholar
  74. Trindle, C.: The quantum mechanical view of molecular structure and the shapes of molecules. Isr. J. Chem. 19, 47–53 (1980)Google Scholar
  75. Woolley, R.G.: Quantum theory and molecular structure. Adv. Phys. 25, 27–52 (1976)CrossRefGoogle Scholar
  76. Woolley, R.G.: Further remarks on molecular structure in quantum theory. Chem. Phys. Lett. 55, 443–446 (1978a)CrossRefGoogle Scholar
  77. Woolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978b)CrossRefGoogle Scholar
  78. Woolley, R.G.: Quantum mechanical aspects of the molecular structure hypothesis. Isr. J. Chem. 19, 30–46 (1980)Google Scholar
  79. Woolley, R.G., Sutcliffe, B.T.: Molecular structure and the Born–Oppenheimer approximation. Chem. Phys. Lett. 45(2), 393–398 (1977)CrossRefGoogle Scholar
  80. Zauhar, R., Moyna, G., et al.: Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J. Med. Chem. 46, 5674–5690 (2003)CrossRefGoogle Scholar
  81. Zeidler, P.: The epistemological status of theoretical models of molecular structure. HYLE 6(1), 17–34 (2000)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemistry & Biological Chemistry, Center for Biotechnology & Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations