Foundations of Chemistry

, 7:203 | Cite as

A Revised Periodic Table: With the Lanthanides Repositioned

Article

Abstract

The lanthanide elements from lanthanum to lutetium inclusive are incorporated into the body of the periodic table. They are subdivided into three sub-groups according to their important oxidation states: La to Sm, Eu to Tm, Yb and Lu, so that Eu and Yb fall directly below Ba; La, Gd, Lu form a column directly below Y; Ce and Tb fall in a vertical line between Zr and Hf. Pm falls below Tc; both are radioactive, and not naturally occurring. The elements with easily attained 2+ and 4+ oxidation states are grouped and clearly differentiated. Gadolinium has an important position as the centre of four triads in the block of elements that surround it– La, Gd, Lu; Ba, Gd, Hf; Eu, Gd, Tb; Yb, Gd, Ce. This new arrangement has the advantages of compactness, simplicity and clarity – there are no tie lines; and important oxidation states of these metals are emphasized. The actinides are also accommodated within this system, and element 114 falls naturally below lead in Group 14.

References

  1. Bartlett J. Pliny the Elder, Ex Africa semper aliquid novi, p. 117; Ecclesiastes I:9, and there is no new thing under the sun, p. 26. Familiar Quotations, 15th edn. London: Macmillan, 1980.Google Scholar
  2. Brock, WH. 1992The Fontana History of ChemistryHarper CollinsLondon327Google Scholar
  3. Brooks, NM. 2002Developing the Periodic Law: Mendeleev’s Work During 1869–1871Found. Chem.4127147CrossRefGoogle Scholar
  4. Cater, ED. 1978High Temperature Chemistry of Rare Earth Compounds: Dramatic Examples of PeriodicityJ. Chem. Educ.55697701Google Scholar
  5. Caven, RM., Lander, GD. 1939Systematic Inorganic Chemistry 6th ednBlackieGlasgow28Google Scholar
  6. F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann. Advanced Inorganic Chemistry, 6th edn. New York: John Wiley, 1999, pp. 1108–1129.Google Scholar
  7. S.A. Cotton. Scadium, Yttrium and the Lanthanides. In R.B. King (Ed.), Encyclopedia of Inorganic Chemistry, Vol. 7, p. 3596. New York: John Wiley, 1994.Google Scholar
  8. Cronyn, MW. 2003The Proper Place for Hydrogen in the Periodic TableJ. Chem. Educ.80947951Google Scholar
  9. E.S. Dana. A Textbook of Mineralogy, 4th edn. rev. W.E. Ford. New York: John Wiley, 1932, pp. 526, 620, 634.Google Scholar
  10. Deming, HC. 1925General ChemistryJohn WileyNew York190Google Scholar
  11. Vault, D. 1944J. Chem. Educ.21575581Google Scholar
  12. J. Donohue. The Structures of the Elements. New York: John Wiley, 1974, pp. 88–95 (cerium), 103–105 (gadolinium), 124 (summary of physical characteristics).Google Scholar
  13. B.E. Douglas, D.H. McDaniel and J.J. Alexander. Concepts and Models of Inorganic Chemistry, 3rd edn. New York: John Wiley, 1994, pp. 28–29, 732–738.Google Scholar
  14. Emsley, J. 1989The ElementsClarendon PressOxford241245Google Scholar
  15. Friedman, HG., Choppin, GR., Feuerbacher, DG. 1964The Shapes of the f OrbitalsJ. Chem. Educ.41354358Google Scholar
  16. N.N. Greenwood and A. Earnshaw. Chemistry of the Elements. Oxford: Pergamon, 1984, pp. 1104–1107, 1114–1115, 1423–1434.Google Scholar
  17. F.A. Hart. Scandium, Yttrium and the Lanthanides. In G. Wilkinson, R.D.Gillard and J.A. McCleverty (Eds.), Comprehensive Coordination Chemistry. Vol. 3, pp. 1059–1127. Oxford: Pergamon, 1987.Google Scholar
  18. D.C. Hoffman and D.M. Lee. Chemistry of the Heaviest Elements–One Atom at a Time. J.Chem. Educ. 76: 332–347, 1999. Note the unusual format of the actinide series in the periodic table on p. 334.Google Scholar
  19. J.A. Huheey, E.A. Keiter and R.L. Keiter. Inorganic Chemistry 4th edn. New York: Harper Collins, 1993, pp. 114–117 (M3+ radii), pp. 599–612.Google Scholar
  20. A.J. Ihde. The Development of Modern Chemistry. New York: Dover, 1984. Brauner, p. 252; Werner, 254; Rare earths, 374; Moseley and Bohr, 588–594.Google Scholar
  21. Jensen, WB. 1982The Positions of Lanthanum (Actinium) and Lutetium (Lawrencium) in the Periodic TableJ. Chem. Educ.59634636Google Scholar
  22. Johnson, DA. 1980Principles of Lanthanide ChemistryJ. Chem. Educ.57475477Google Scholar
  23. Johnson, DA. 1982Some Thermodynamic Aspects of Inorganic Chemistry. 2nd ednCUPCambridge158168Google Scholar
  24. Kaji, M., Mendeleev’s, DI. 2002Concept of Chemical Elements and The Principles of ChemistryBull. Hist. Chem.27416Google Scholar
  25. Karol, PJ. 2002The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and BeyondJ. Chem. Educ.796063Google Scholar
  26. Keller, RN. 1962Energy Level Diagrams and Extranuclear Building of the ElementsJ. Chem. Educ.39289293Google Scholar
  27. Kragh, H. 2001The First Subatomic Explanations of the Periodic SystemFound. Chem.3129143CrossRefGoogle Scholar
  28. T.S. Kuhn. The Structure of Scientific Revolutions, 2nd edn. Chicago: U. of Chicago Press, 1970, pp. 59, 62, 71, 80, 85, 109 especially.Google Scholar
  29. Laing, M. 1989The Periodic Table–againEduc. Chem.26177178Google Scholar
  30. Laing, M. 1999The Knight’s Move in the Periodic TableEduc. Chem.36160161Google Scholar
  31. Laing, M. 2001aPeriodic PatternsJ. Chem. Educ.78877Google Scholar
  32. Laing, M. 2001bMelting Point, Density, and Reactivity of MetalsJ. Chem. Educ.7810541058Google Scholar
  33. Laing, M. 2001cHow Useful is Electron Configuration s2?Educ. Chem.38161163Google Scholar
  34. Lang, PF., Smith, BC. 2003Ionization Energies of Atoms and Atomic IonsJ. Chem. Educ.80938946Google Scholar
  35. Mazurs, EG. 1974Graphic Representations of the Periodic System During One Hundred Years 2nd ednU of Alabama PressAlabama4042Google Scholar
  36. Mellor, J.W.Parkes, G.D. eds. 1951Mellor’s Modern Inorganic ChemistryLongmansGreen, Londonpp. 118; 706–710Google Scholar
  37. Moeller, T. 1965The Chemistry of the LanthanidesChapman and HallLondonpp 22–25, 37, 57, 58Google Scholar
  38. Moeller, T. 1970Periodicity and the Lanthanides and ActinidesJ. Chem. Educ.47417423Google Scholar
  39. Moeller T. The Lanthanides. In J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F. Trotman-Dickenson (Eds), Comprehensive Inorganic Chemistry. Vol 4, pp. 1–101, especially p. 6 and 21. Oxford: Pergamon, 1973.Google Scholar
  40. H.G.J. Moseley. The High Frequency Spectra of the Elements. Phil. Mag. 26: 1024–1034, 1913, and 27: 703–713, 1914.Google Scholar
  41. Parish, RV. 1977The Metallic ElementsLongmanLondon142155Google Scholar
  42. Partington, JR. 1937A Text-Book of Inorganic Chemistry 5th edn.MacmillanLondon411Google Scholar
  43. Pitzer, KS. 1979Relativistic Effects on Chemical PropertiesAcc. Chem. Res.12271276CrossRefGoogle Scholar
  44. Pyykkö, P., Desclaux, JP. 1979Relativity and the Periodic System of ElementsAcc. Chem. Res.12276281Google Scholar
  45. Pyykkö, P. 2002Relativity, Gold, Closed-Shell InteractionsAngewandte Chemie International Edition.4135733578Google Scholar
  46. H. Remy. Treatise on Inorganic Chemistry, Vol II, pp. 30–43, 478–501; tables 54 and 55. Amsterdam: Elsevier, 1956.Google Scholar
  47. R. Rich. Periodic Correlations. New York: Benjamin, 1965, pp. 2, 3, 4, 61, 80.Google Scholar
  48. Sanderson, RT. 1964A Rational Periodic TableJ. Chem. Educ.41187189Google Scholar
  49. Sanderson, RT. 1967Inorganic ChemistryReinholdNew Yorkpp. 14–16, 54–59Google Scholar
  50. E. Scerri. The Periodic Table: The Ultimate Paper Tool in Chemistry. In E.Klein (Ed.), Tools and Modes of Representation in the Laboratory Sciences, pp. 163–177. Dordrecht: Kluwer Academic, 2001.Google Scholar
  51. Seaborg, GT. 1945The Chemical and Radioactive Properties of the Heavy ElementsChem. Eng. News 23, December1021902193Google Scholar
  52. Seaborg, GT. 1969Prospects for Further Considerable Extension of the Periodic TableJ. Chem. Educ.46626634CrossRefGoogle Scholar
  53. W.F. Sheehan. Physical Chemistry. Quoted in H.H. Sisler. Electronic Structure, Properties, and the Periodic Law, p. 33. New York, Reinhold, 1963. Boston: Allyn and Bacon, 1961.Google Scholar
  54. Sidgwick, NV. 1950The Chemical Elements and Their Compounds Vol 1.Clarendon PressOxford439457Google Scholar
  55. Ternstrom, T. 1964A Periodic TableJ. Chem. Educ.41190191Google Scholar
  56. Tufte, ER. 1983The Visual Display of Quantitative InformationCheshire. Graphics PressConn51Google Scholar
  57. Spronsen, JW. 1969The Periodic System of Chemical ElementsElsevierAmsterdam260284Google Scholar
  58. Vickery, RC. 1953Chemistry of the LanthanonsButterworthsLondon1158Google Scholar
  59. R.C. Vickery. Scandium, Yttrium and the Lanthanides. In J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F. Trotman-Dickenson. (Eds.), Comprehensive Inorganic Chemistry. Vol. 3, pp. 329–353, especially p. 331. Oxford: Pergamon, 1973.Google Scholar
  60. M.E. Weeks. Discovery of the Elements 6th edn. J. Chem. Educ. p. 671–683, 695–727.PA: Easton, 1956.Google Scholar
  61. Werner, A. 1908New Ideas on Inorganic Chemistry (Translated from the 2nd German edition)LongmansLondonGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.School of Pure and Applied ChemistryUniversity of NatalDurbanRepublic of South Africa

Personalised recommendations