Fluid Dynamics

, Volume 41, Issue 5, pp 772–783 | Cite as

Analysis of data on the relation between eddies and streaky structures in turbulent flows using the placebo method

  • S. I. Chernyshenko
  • G.M. Di Cicca
  • A. Iollo
  • A.V. Smirnov
  • N. D. Sandham
  • Z.W. Hu
Article

Abstract

An artificially synthesized velocity field with known properties is used as a test data set in analyzing and interpreting the turbulent flow velocity fields. The objective nature of this approach is utilized for studying the relation between streaky and eddy structures. An analysis shows that this relation may be less significant than is customarily supposed.

Keywords

turbulence visualization streaky structures eddy Galilean decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.V. Boiko, G.R. Grek, A.V. Dovgal’, and V.V. Kozlov, Development of Turbulence in Near-Wall Flows [in Russian], Nauka, Novosibirsk (1999).Google Scholar
  2. 2.
    S. I. Chernyshenko and M. F. Baig, “The mechanism of streak formation in near-wall turbulence,” J. Fluid Mech., 44, 99–131 (2005).CrossRefADSGoogle Scholar
  3. 3.
    R. J. Adrian, K. T. Christensen, and Z.-C. Liu, “Analysis and interpretation of instantaneous turbulent velocity fields,” Experim. Fluids, 29, No. 3, 275–290 (2000).CrossRefADSGoogle Scholar
  4. 4.
    M. S. Chong, A. E. Perry, and B. J. Cantwell, “A general classification of three-dimensional flow field,” Phys. Fluids A, 2, No. 5, 765–777 (1990).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    I. Marusic, “On the role of large-scale structures in wall turbulence,” Phys. Fluids, 13, No. 5, 735–743 (2001).CrossRefADSGoogle Scholar
  6. 6.
    A. Smirnov, S. Shi, and I. Celik, “Random flow generation technique for large eddy simulations and particle-dynamics modeling,” Trans. ASME. J. Fluids. Engng., 123, No. 2, 359–371 (2001).CrossRefGoogle Scholar
  7. 7.
    D. R. Osborne, J. C. Vassilicos, and J. D. Haigh, “One particle two-time diffusion in three-dimensional homogeneous isotropic turbulence,” Phys. Fluids, 1y, No. 3, 03510.1–035104.11 (2005).Google Scholar
  8. 8.
    G. Kawahara, J. Jiménez, M. Uhlmann, and A. Pinelli, “The instability of streaks in near-wall turbulence,” Annu. Res. Briefs, CTR, 155–170 (1998).Google Scholar
  9. 9.
    Z. Hu, Chr. J. Morfey, and N. D. Sandham, “Sound radiation in turbulent channel flows,” J. Fluid Mech., 475, 269–302 (2003).CrossRefADSGoogle Scholar
  10. 10.
    C.D. Tomkins and R. J. Adrian, “Spanwise structure and scale growth in turbulent boundary layers, ” J. Fluid Mech., 490, 37–74 (2003).CrossRefADSGoogle Scholar
  11. 11.
    P. R. Spalart, “Direct simulation of a turbulent boundary layer up to Re = 1410,” J. Fluid Mech., 187, 61–98 (1988).CrossRefADSGoogle Scholar
  12. 12.
    S. Robinson, “Coherent motions in the turbulent boundary layer,” Annu. Rev. Fluid Mech., 23, 601–639 (1991).CrossRefADSGoogle Scholar
  13. 13.
    G. Berkooz, P. J. Holmes, and J. L. Limley, “The proper orthogonal decomposition in the analysis of turbulent flows,” Annu. Rev. Fluid Mech., 25, 539–575 (1993).CrossRefADSGoogle Scholar
  14. 14.
    Z. Hu and N. D. Sandham, “DNS databases for turbulent Couette and Poiseuille flow,” Technical Report 01/04. 2002, AFM Research Group, SES, Univ. Southampton (2001).Google Scholar
  15. 15.
    M.-G. Di Cicca, G. Iuso, P.G. Spazzini, and M. Onorato, “Particle image velocimetry investigation of turbulent boundary layer manipulated by spanwise wall oscillations,” J. Fluid Mech., 467, 41–56 (2002).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. I. Chernyshenko
  • G.M. Di Cicca
  • A. Iollo
  • A.V. Smirnov
  • N. D. Sandham
  • Z.W. Hu

There are no affiliations available

Personalised recommendations