Fluid Dynamics

, Volume 41, Issue 3, pp 434–446 | Cite as

Pressure wave propagation in liquid-filled tubes of viscoelastic material

  • N. N. Kizilova
Article

Abstract

The propagation of small-amplitude waves in a thick-walled long viscoelastic tube of variable cross-section, filled with a viscous incompressible fluid, is considered with account for wave reflection at the tube end in application to arterial pulse wave propagation. A solution is obtained in the form of expansions in a small parameter. The effect of the coefficient of wave reflection at the tube end and the wall material parameters on the fluid volume flow-rate and the tube wall displacement is investigated. It is shown that the volume flow-rate phase spectrum characteristics depend only slightly on the wall properties and can be used in clinical diagnostics for finding the reflection coefficient from pressure and flow-rate records.

Keywords

pulse wave viscoelastic tube wave reflection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. O’Rourke, R. P. Kelly, and A. P. Avolio, The Arterial Pulse, Lea and Febiger, Philadelphia (1992).Google Scholar
  2. 2.
    I. N. Moiseeva and S. A. Regirer, “Some properties of pulse wave reflection in arteries,” Fluid Dynamics, 28, No. 4, 536–540 (1993).MATHCrossRefGoogle Scholar
  3. 3.
    Y. Y. Wang, S. L. Chang, Y. E. Wu, T. L. Hsu, and W. K. Wang, “Resonance. The missing phenomenon in hemodynamics,” Circ. Res., 69, No. 1, 246–249 (1991).Google Scholar
  4. 4.
    N. N. Kizilova, “Reflection of pulse waves and resonance characteristics of arterial beds,” Fluid Dynamics, 38, No. 5, 772–781 (2003).MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    N. N. Kizilova, “Investigation of the pressure-flow-rate dependence and the parameters of incident and reflected pressure waves in arterial beds,” Akust. Vestnik, 7, No. 1, 50–61 (2004).Google Scholar
  6. 6.
    W. R. Milnor, Hemodynamics, Williams and Wilkins, Baltimore, etc. (1989).Google Scholar
  7. 7.
    M. Hamadiche and N. N. Kizilova, “Temporal and spatial instabilities of the flow in the blood vessels as multilayered compliant tubes,” Intern. J. Dynam. Fluids, 1, No. 1, 1–23 (2005).Google Scholar
  8. 8.
    J. R. Womersley, “An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries,” Tech.Report TR-56-614 (1957).Google Scholar
  9. 9.
    M. G. Taylor, “The input impedance of an assembly of randomly branching elastic tubes,” Biophys. J., 6, No. 1, 29–51 (1966).Google Scholar
  10. 10.
    I. Mirsky, “Wave propagation in a viscous fluid contained in an orthotropic elastic tube,” Biophys. J, 7, No. 2, 165–186 (1967).Google Scholar
  11. 11.
    H. B. Atabek, “Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube,” Biophys. J, 8, No. 5, 626–649 (1968).CrossRefGoogle Scholar
  12. 12.
    A. P. Avolio, “Multi-branched model of the human arterial system,” Med. and Biol. Eng. and Comput., 18, No. 6, 709–718 (1980).CrossRefGoogle Scholar
  13. 13.
    V. A. Levtov, S. A. Regirer, and N. Kh. Shadrina, Blood Rheology [in Russian], Meditsina, Moscow (1982).Google Scholar
  14. 14.
    R. H. Cox, “Comparison of linearized wave propagation models for arterial blood flow analysis,” J. Biomech., 2, No. 3, 251–265 (1969).CrossRefGoogle Scholar
  15. 15.
    A. W. Khir and K. H. Parker, “Measurements of wave speed and reflected waves in elastic tubes and bifurcations,” J. Biomech., 35, No. 6, 775–783 (2002).CrossRefGoogle Scholar
  16. 16.
    S. Naili and C. Ribreau, “Wall shear stress in collapsed tubes,” Eur. Phys. J, 5, No. 1, 95–100 (1999).Google Scholar
  17. 17.
    H. Alderson and M. Zamir, “Smaller, stiffer coronary bypass can moderate or reverse the adverse effects of wave reflections,” J. Biomech., 34, No. 11, 1455–1462 (2001).CrossRefGoogle Scholar
  18. 18.
    M. F. O’Rourke, A. Pauca, and X.-J. Jiang, “Pulse wave analysis,” Brit. J. Clin. Pharmacol., 51, No. 6, 507–522 (2001).CrossRefGoogle Scholar
  19. 19.
    V. Shankar and V. Kumaran, “Asymptotic analysis of wall modes in a flexible tube revisited,” Eur. Phys. J, Ser.B, 19, No. 4, 607–622 (2001).CrossRefADSGoogle Scholar
  20. 20.
    J. J. Wang and K. H. Parker, “Wave propagation in a model of the arterial circulation,” J. Biomech., 37, No. 4, 457–470 (2004).CrossRefGoogle Scholar
  21. 21.
    C. M. Quick, D. A. O’Hara, and A. Noordergraaf, “Pulse wave reflection and arterial inefficiency,” Proc. 17th IEEE Annual Conf. “Engineering in Medicine and Biology”, 1, 97–98 (1995).Google Scholar
  22. 22.
    C. M. Quick, D. S. Berger, and A. Noordergraaf, “Arterial pulse wave reflection as feedback,” IEEE Trans. BME, 49, No. 5, 440–445 (2002).Google Scholar
  23. 23.
    K. Belani, M. Ozaki, J. Hynson, et al., “A new noninvasive method to measure blood pressure,” Anesthesiology, 91, No. 3, 686–692 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. N. Kizilova

There are no affiliations available

Personalised recommendations