Modeling and analyzing sequence stability in flexible automotive production systems

  • Marcel Lehmann
  • Heinrich KuhnEmail author


We consider the question whether or not high volume automotive production sites can be transformed to the basic concept of stabilized production. The problem is motivated by the necessity of car producers to transform their existing plants to this production system in order to deal with the increasing complexity of the manufacturing process. To successfully answer this question the long term stability level needs to be determined. Since these facilities are currently working under completely different production premises the stability level is not measurable. To overcome this obstacle the estimation of possible stability levels is crucial. Therefore, we propose a discrete event based simulation model to provide the necessary information in order to answer the question formulated. To verify the proposed method, an empirical study is conducted. Besides the stability levels different influence factors and recommendations could be derived from the present study. The transparency provided by this approach fosters the understanding of the stabilized production and reveals several gaps in the literature, which provide new fields of research.


Automotive production Flow line production Restoration sequencer Re-sequencing Discrete event simulation (DES) Empirical simulation study 



We would like to thank the anonymous reviewers and the Guest Editor of the special issue for their valuable recommendations, which have significantly improved our paper.


  1. Boysen N, Fliedner M, Scholl A (2009) Sequencing mixed-model assembly lines: survey, classification and model critique. Eur J Oper Res 192:349–373MathSciNetCrossRefzbMATHGoogle Scholar
  2. Boysen N, Golle U, Rothlauf F (2011) The car resequencing problem with pull-off tables. Bus Res 4:276–292CrossRefGoogle Scholar
  3. Boysen N, Scholl A, Wopperer N (2012) Resequencing of mixed-model assembly lines: survey and research agenda. Eur J Oper Res 216:594–604CrossRefGoogle Scholar
  4. Choi W, Shin H (1997) A real-time sequence control system for the level production of the automobile assembly line. Compute Ind Eng 33:769–772CrossRefGoogle Scholar
  5. Ding F, Sun H (2004) Sequence alteration and restoration related to sequenced parts delivery on an automobile mixed-model assembly line with multiple departments. Int J Prod Res 42:1525–1543CrossRefGoogle Scholar
  6. Fournier X, Agard B (2007) Improvement of earliness and lateness by postponement on an automotive production line. Int J Flex Manuf Syst 19:107–121CrossRefzbMATHGoogle Scholar
  7. Grinninger J (2012 )Schlanke Produktionssteuerung zur Stabilisierung von Auftragsfolgen in der Automobilproduktion, fml, Lehrstuhl für Fördertechnk Materialfluss LogistikGoogle Scholar
  8. Günther M (2017) Produktionssteuerung nach dem Perlenketten-Prinzip am Beispiel der Automobilfertigung. Friedrich-Schiller-Universität JenaGoogle Scholar
  9. Gusikhin O, Caprihan R, Stecke K (2008) Least in-sequence probability heuristic for mixed-volume production lines. Int J Prod Res 46:647–673CrossRefzbMATHGoogle Scholar
  10. Inman R (2003) ASRS sizing for recreating automotive assembly sequences. Int J Prod Res 41:847–863CrossRefGoogle Scholar
  11. Klug F (2010) Logistikmanagement in der Automobilindustrie: Grundlagen der Logistik im Automobilbau. Springer, Berlin, p 41Google Scholar
  12. Klug F (2017) Automobillogistik: Das Perlenkettenprinzip der stabilen Auftragsfolge in der Automobillogistik. Springer Gabler, Wiesbaden, pp 137–160Google Scholar
  13. Lehmann M, Kuhn H (2018) In-line sequencing in automotive production plants—a simulation study. In: Kliewer N, Ehmke J, Borndörfer R (eds) Operations research proceedings 2017. Operations Research Proceedings (GOR (Gesellschaft für Operations Research e.V.)). Springer, Cham, pp 537–542CrossRefGoogle Scholar
  14. Mayrhofer W, März L, Sihn W (2011) Planning assistance for pearl chain forecasts and personnel assignment planning of sequenced assembly lines. CIRP Ann 60:481–484CrossRefGoogle Scholar
  15. Meißner S (2009) Logistische Stabilität in der automobilen Variantenfließfertigung, Lehrstuhl für Fördertechnik, Materialfluss. Logistik der Techn. UnivGoogle Scholar
  16. Meißner S, Grinninger J, Kammermeier F (2008) Stabilisierung des Auftragsabwicklungsprozesses durch flexible Auftragszuordnung: Methoden und Wirkung der Reihenfolgenabsicherung zur Umsetzung einer stabilen Auftragsfolge am Beispiel der Automobilproduktion. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 103:893–897CrossRefGoogle Scholar
  17. Meissner S (2010) Controlling just-in-sequence flow-production. Logist Res 2:45–53CrossRefGoogle Scholar
  18. Meyr H (2004) Supply chain planning in the German automotive industry. OR Spectr 26:447–470CrossRefzbMATHGoogle Scholar
  19. Morrison K (1991) Animation—a new dimension in computer simulation of automotive assembly processes. Comput Ind Eng 21:547–551CrossRefGoogle Scholar
  20. Myron D (1996) Paint blocking in Ford’s in-line vehicle sequencing environment. Massachusetts Institute of TechnologyGoogle Scholar
  21. Popovics G, Pfeiffer A, Kádár B, Vén Z, Kemény L, Monostori L (2012) Automatic simulation model generation based on PLC codes and MES stored data. Procedia CIRP 3:67–72CrossRefGoogle Scholar
  22. Sawyer CA (1994) In-line sequencing: how it’s done at Wixom. Automototive Industries, p 41Google Scholar
  23. Solnon C, Chung V, Nguyen A, Artigues C (2008) The car sequencing problem: overview of state-of-the-art methods and industrial case-study of the ROADEF2005 challenge problem. Eur J Oper Res 191:912–927CrossRefzbMATHGoogle Scholar
  24. Statkevich K (2011) Entwicklung einer Vorgehensmethodik zur Umsetzung der Belieferung nach Perlenkette in der Automobilindustrie. Cuvillier Verlag, GöttingenGoogle Scholar
  25. Swaminathan J, Nitsch T (2007) Managing product variety in automobile assembly: the importance of the sequencing point. INFORMS J Appl Anal 37:324–333Google Scholar
  26. Weyer M (2002) Das Produktionssteuerungskonzept Perlenkette und dessen Kennzahlensystem. Helmesverlag, KarlsruheGoogle Scholar
  27. Weyer M, Spath D (2009) Das Produktionssteuerungskonzept ’Perlenkette’. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 104:1126–1130CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OperationsCatholic University of Eichstätt-IngolstadtIngolstadtGermany

Personalised recommendations