Flexible Services and Manufacturing Journal

, Volume 26, Issue 4, pp 585–608 | Cite as

An exact reoptimization algorithm for the scheduling of elevator groups

  • Benjamin Hiller
  • Torsten Klug
  • Andreas Tuchscherer


The task of an elevator control is to schedule the elevators of a group such that small waiting and travel times for the passengers are obtained. We present an exact reoptimization algorithm for this problem. A reoptimization algorithm computes a new schedule for the elevator group each time a new passenger arrives. Our algorithm uses column generation techniques and is, to the best of our knowledge, the first exact reoptimization algorithm for a group of passenger elevators. To solve the column generation problem, we propose a Branch & Bound method. The overall algorithm finds high-quality solutions very quickly.


  1. Achterberg T (2009) SCIP: solving constraint integer programs. Math Prog Comp 1(1):1–41Google Scholar
  2. Achterberg T, Berthold T, Gamrath G, Heinz S, Pfetsch M, Vigerske S, Wolter K (2010) SCIP: solving constraint integer programs. Available at http://scip.zib.de
  3. Barney GC (2002) Elevator Traffic handbook: theory and practice, Taylor and Francis, LondonGoogle Scholar
  4. Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column generation, Springer, BerlinMATHGoogle Scholar
  5. Friese P, Rambau J (2006) Online-optimization of a multi-elevator transport system with reoptimization algorithms based on set-partitioning models. Discret Appl Math 154(13):1908–1931. Also available as ZIB Report 05-03Google Scholar
  6. Gloss GD (1970) The computer control of passenger traffic in large lift systems. Ph.D. thesis, Victoria University of ManchesterGoogle Scholar
  7. Hiller B (2009) Online optimization: probabilistic analysis and algorithm engineering. Ph.D. thesis, TU BerlinGoogle Scholar
  8. Hiller B, Klug T, Tuchscherer A (2009) Improving the performance of elevator systems using exact reoptimization algorithms. In: 9th MAPSPGoogle Scholar
  9. Hiller B, Krumke SO, Rambau J (2006) Reoptimization gaps versus model errors in online-dispatching of service units for ADAC. Discret Appl Math 154(13):1897–1907. Traces of the Latin American conference on combinatorics, graphs and applications: a selection of papers from LACGA 2004, Santiago, ChileGoogle Scholar
  10. Hiller B, Tuchscherer A (2008) Real-time destination-call elevator group control on embedded microcontrollers. In: Operations research proceedings 2007, Springer, Berlin, pp 357–362Google Scholar
  11. Hiller B, Vredeveld T (2012) Stochastic dominance analysis of online bin coloring algorithms. ZIB Report 12–42, Zuse Institute, Berlin. http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1650
  12. Koehler J, Ottiger D (2002) An AI-based approach to destination control in elevators. AI Mag 23(3):59–78Google Scholar
  13. Krumke SO, Rambau J, Torres LM (2002) Realtime-dispatching of guided and unguided automobile service units with soft time windows. In: Proceedings of the 10th ESA, LNCS, vol 2461, Springer, Berlin, pp 637–648Google Scholar
  14. Schröder J (1990) Advanced dispatching: destination hall calls + instant car-to-call assignments: M10. Elevator World, pp 40–46Google Scholar
  15. Seckinger B, Koehler J (1999) Online-Synthese von Aufzugssteuerungen als Planungsproblem. In: 13th Workshop on planning and configuration, pp 127–134Google Scholar
  16. Smith R, Peters R (2002) ETD algorithm with destination dispatch and booster options. Elevator World, pp 136–145Google Scholar
  17. Tanaka S, Uraguchi Y, Araki M (2005) Dynamic optimization of the operation of single-car elevator systems with destination hall call registration. Eur J Oper Res 167(2):550–587CrossRefMATHGoogle Scholar
  18. Tyni T, Ylinen J (2006) Evolutionary bi-objective optimisation in the elevator car routing problem. Eur J Oper Res 169(3): 960–977CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Benjamin Hiller
    • 1
  • Torsten Klug
    • 1
  • Andreas Tuchscherer
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations