Advertisement

Fish Physiology and Biochemistry

, Volume 46, Issue 1, pp 247–264 | Cite as

Effects of industrial pollution on the reproductive biology of Squalius laietanus (Actinopterygii, Cyprinidae) in a Mediterranean stream (NE Iberian Peninsula)

  • Patricia Soler
  • Montserrat Solé
  • Raquel Bañón
  • Eduardo García-Galea
  • Mercè Durfort
  • Víctor Matamoros
  • Josep Maria Bayona
  • Dolors VinyolesEmail author
Article

Abstract

Mediterranean rivers are severely affected by pollutants from industry, agriculture and urban activities. In this study, we examined how industrial pollutants, many of them known to act as endocrine disruptors (EDCs), could disturb the reproduction of the Catalan chub (Squalius laietanus). The survey was conducted throughout the reproductive period of S. laietanus (from March to July 2014) downstream an industrial WWTP located in the River Ripoll (NE Iberian Peninsula). Eighty fish (28 females and 52 males) were caught by electrofishing upstream and 77 fish (33 females and 44 males) downstream a WWTP. For both sexes, the gonadosomatic index (GSI) and gonadal histology were examined and related to water chemical analysis and fish biomarkers. Female fecundity was assessed using the gravimetric method. Fish from the polluted site showed enhanced biomarker responses involved in detoxification. Also, in the polluted site, lower GSI values were attained in both sexes and females displayed lower numbers of vitellogenic oocytes. Gonadal histology showed that all maturation stages of testicles and ovaries were present at the two study sites but fish males from the polluted site had smaller diameter seminiferous tubules. Water chemical analysis confirmed greater presence of EDCs in the river downstream the industrial WWTP. The chemicals benzotriazole and benzothiazole could be partially responsible for the observed alterations in the reproductive biology of S. laietanus.

Keywords

Endocrine disruption Benzotriazole Benzothiazole Gonadal histology Female fecundity Desynchronised spawning 

Notes

Acknowledgements

We thank J. Correas and E. Prats for their help at the microscopy laboratories of the University of Barcelona. Thanks also to J. D. Rodríguez-Teijeiro for the assistance and help in the field. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors are grateful to three anonymous reviewers and Víctor Bonet for the English review.

References

  1. Aparicio E, Alcaraz C, Carmona-Catot G, García-Berthou E, Pou-Rovira Q, Rocaspana R, Vargas MJ, Vinyoles D (2016) Peixos continentals de Catalunya. Ecologia, conservació i guia d’identificació. Lynx Edicions, BarcelonaGoogle Scholar
  2. Armstrong BM, Lazorchak JM, Murphy CA, Haring HJ, Jensen KM, Smith ME (2012) Determining the effects of ammonia on fathead minnow (Pimephales promelas) reproduction. Sci Total Environ 420:127–133.  https://doi.org/10.1016/j.scitotenv.2012.01.005 CrossRefPubMedGoogle Scholar
  3. Armstrong BM, Lazorchak JM, Murphy CA, Haring HJ, Jensen KM, Smith ME (2015) Determining the effects of a mixture of an endocrine disrupting compound, 17 α-ethinylestradiol, and ammonia on fathead minnow (Pimephales promelas) reproduction. Chemosphere 120:108–114.  https://doi.org/10.1016/j.chemosphere.2014.06.049 CrossRefPubMedGoogle Scholar
  4. Bagenal TB (1978) Aspects of fish fecundity. In: Gerking SD (ed) Methods of assessment of ecology of freshwater fish production. Blackwell scientific publications, London, pp 75–101 Isbn 0-470-99362-6 75–101Google Scholar
  5. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  6. Baumann L, Holbech H, Keiter S, Kinnberg KL, Knörr S, Nagel T, Braunbeck T (2013) The maturity index as a tool to facilitate the interpretation of changes in vitellogenin production and sex ratio in the fish sexual development test. Aquat Toxicol 128–129:34–42.  https://doi.org/10.1016/j.aquatox.2012.11.016 CrossRefPubMedGoogle Scholar
  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  8. Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, vom Saal FS, Rosenfeld CS (2015) Effects of the environmental estrogenic contaminants bisphenol a and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 214:195–219.  https://doi.org/10.1016/j.ygcen.2014.09.014 CrossRefPubMedGoogle Scholar
  9. Bjerregaard P, Kinnberg KL, Mose MP, Holbech H (2018) Investigation of the potential endocrine effect of nitrate in zebrafish Danio rerio and brown trout Salmo trutta. Comp Biochem Physiol C Toxicol Pharmacol 211:32–40.  https://doi.org/10.1016/j.cbpc.2018.05.006 CrossRefPubMedGoogle Scholar
  10. Blanco M, Rizzi J, Fernandes D, Colin N, Maceda-Veiga A, Porte C (2019) Assessing the impact of waste water effluents on native fish species from a semi-arid region, NE Spain. Sci. Total Environ 654:218–225.  https://doi.org/10.1016/j.scitotenv.2018.11.115 CrossRefGoogle Scholar
  11. Bradford MM (1976) A rapid and sensitive method for the for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Casals F (2005) Les Comunitats íctiques dels rius mediterranis: relació amb les condicions ambientals. Dissertation, University of Barcelona. http://hdl.handle.net/2445/35897
  13. Clavero M, Blanco-Garrido F, Prenda J (2004) Fish fauna in Iberian Mediterranean river basins: biodiversity, introduced species and damming impacts. Aquat Conserv Mar Freshw Ecosyst 14:575–585.  https://doi.org/10.1002/aqc.636 CrossRefGoogle Scholar
  14. Colin N, Maceda-Veiga A, Flor-Arnau N, Mora J, Fortuño P, Vieira C, Prat N, Cambra J, de Sostoa A (2016) Ecological impact and recovery of a Mediterranean river after receiving the effluent from a textile dyeing industry. Ecotoxicol Environ Saf 132:295–303.  https://doi.org/10.1016/j.ecoenv.2016.06.017 CrossRefPubMedGoogle Scholar
  15. Colin N, Maceda-Veiga A, Monroy M, Ortega-Ribera M, Llorente M, de Sostoa A (2017) Trends in biomarkers, biotic indices, and fish population size revealed contrasting long-term effects of recycled water on the ecological status of a Mediterranean river. Ecotoxicol Environ Saf 145:340–348.  https://doi.org/10.1016/j.ecoenv.2017.07.048 CrossRefPubMedGoogle Scholar
  16. Coronado M, De Haro H, Deng X, Rempel MA, Lavado R, Schlenk D (2008) Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquat Toxicol 90:182–187.  https://doi.org/10.1016/j.aquatox.2008.08.018 CrossRefPubMedGoogle Scholar
  17. Crespo M, Solé M (2016) The use of juvenile Solea solea as sentinel in the marine platform of the Ebre Delta: in vitro interaction of emerging contaminants with the liver detoxification system. Environ Sci Pollut Res 23:19229–19236.  https://doi.org/10.1007/s11356-016-7146-7 CrossRefGoogle Scholar
  18. Cuttelod A, García N, Malak DA, Temple H (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vié JC, Hilton-Taylor C, Stuart SN (eds) The 2008 review of the IUCN red list of threatened species. IUCN Gland, SwitzerlandGoogle Scholar
  19. Dietrich DR, Krieger HO (2009) Histological analysis of endocrine disruptive effects in small laboratory fish. Wiley-Interscience, CanadaGoogle Scholar
  20. Doadrio I, Kottelat M, de Sostoa A (2007) Squalius laietanus, a new species of cyprinid fish from North-Eastern Spain and southern France (Teleostei : Cyprinidae). Ichthyol Explor Fres 18:247–256Google Scholar
  21. Doadrio I, Perea S, Garzón-Heydt P, González JL (2011) Ictiofauna Continental Española, Ictiofauna Continental Española. Bases para su seguimiento. DG Medio Natural y Política Forestal. MARM. 616 pp. MadridGoogle Scholar
  22. European Water Framework Directive (2000/60/EC) (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European CommunitiesGoogle Scholar
  23. Evans JJ, Shoemaker CA, Klesius PH (2000) In vivo and in vitro effects of benzothiazole on sheepshead minnow (Cyprinodon variegatus). Mar Environ Res 50:257–261.  https://doi.org/10.1016/S0141-1136(00)00090-8 CrossRefPubMedGoogle Scholar
  24. Fernandes D, Potrykus J, Morsiani C, Raldua D, Lavado R, Porte C (2002) The combined use of chemical and biochemical markers to assess water quality in two low-stream rivers (NE Spain). Environ Res 90A:169–178.  https://doi.org/10.1006/enrs.2002.4390 CrossRefGoogle Scholar
  25. Fernandes D, Schnell S, Porte C (2011) Can pharmaceuticals interfere with the synthesis of active androgens in male fish? An in vitro study. Mar Pollut Bull 62:2250–2253.  https://doi.org/10.1016/j.marpolbul.2011.07.011 CrossRefPubMedGoogle Scholar
  26. Freyhof J, Brooks E (2011) European Red List of Freshwater Fishes Luxembg Publ Off Eur Union 646Google Scholar
  27. Galic N, Hommen U, Baveco JMH, van den Brink PJ (2010) Potential application of population models in the European ecological risk assessment of chemicals. II. Review of models and their potential to address environmental protection aims. Integr Environ Assess Manag 6:338–360.  https://doi.org/10.1002/ieam.68 CrossRefPubMedGoogle Scholar
  28. Gimeno S, Komen H, Jobling S, Sumpter J, Bowmer T (1998) Demasculinisation of sexually mature male common carp, Cyprinus carpio, exposed to 4-tert-pentylphenol during spermatogenesis. Aquat Toxicol 43:93–109.  https://doi.org/10.1016/S0166-445X(98)00060-5 CrossRefGoogle Scholar
  29. Ginebreda A, Kuzmanovic M, Guasch H, de Alda ML, López-Doval JC, Muñoz I, Ricart M, Romaní AM, Sabater S, Barceló D (2014) Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors. Sci Total Environ 468-469:715–723.  https://doi.org/10.1016/j.scitotenv.2013.08.086 CrossRefPubMedGoogle Scholar
  30. Good C, Davidson J, Iwanowicz L, Meyer M, Dietze J, Kolpin DW, Marancik D, Birkett J, Williams C, Summerfelt S (2017) Investigating the influence of nitrate nitrogen on post-smolt Atlantic salmon Salmo salar reproductive physiology in freshwater recirculation aquaculture systems. Aquac Eng 78:2–8.  https://doi.org/10.1016/j.aquaeng.2016.09.003 CrossRefGoogle Scholar
  31. Goodbred SL, Patino R, Torres L, Echols KR, Jenkins JA, Rosen MR, Orsak E (2015) Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male largemouth bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA? Gen. Comp Endocrinol 219:125–135.  https://doi.org/10.1016/j.ygcen.2015.02.015 CrossRefGoogle Scholar
  32. Gorga M, Insa S, Petrovic M, Barceló D (2015) Occurrence and spatial distribution of EDCs and related compounds in waters and sediments of Iberian rivers. Sci Total Environ 503–504:69–86.  https://doi.org/10.1016/j.scitotenv.2014.06.037 CrossRefPubMedGoogle Scholar
  33. Hamilton PB, Cowx IG, Oleksiak MF, Griffiths AM, Grahn M, Stevens JR, Carvalho GR, Nicol E, Tyler CR (2016) Population-level consequences for wild fish exposed to sublethal concentrations of chemicals—a critical review. Fish Fish 17:545–566.  https://doi.org/10.1111/faf.12125 CrossRefGoogle Scholar
  34. Han S, Choi K, Kim J, Ji K, Kim S, Ahn B, Yun J, Choi K, Khim JS, Zhang X, Giesy JP (2010) Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquat Toxicol 98:256–264.  https://doi.org/10.1016/j.aquatox.2010.02.013 CrossRefPubMedGoogle Scholar
  35. Harris CA, Routledge EJ, Schaffner C, Brian JV, Giger W, Sumpter JP (2007) Benzotriazole is antiestrogenic in vitro but not in vivo. Environ Toxicol Chem 26:2367–2372.  https://doi.org/10.1897/06-587R.1 CrossRefPubMedGoogle Scholar
  36. Hecker M, Tyler CR, Hoffmann M, Maddix S, Karbe L (2002) Plasma biomarkers in fish provide evidence for endocrine modulation in the Elbe river, Germany. Environ Sci Technol 36:2311–2321.  https://doi.org/10.1021/es010186h CrossRefPubMedGoogle Scholar
  37. Herrero P, Borrull F, Pocurull E, Marcé RM (2013) Efficient tandem solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide contaminants in environmental water samples. J Chromatogr A 1309:22–32.  https://doi.org/10.1016/j.chroma.2013.08.018 CrossRefPubMedGoogle Scholar
  38. IUCN (2012) Guidelines for application of IUCN red list criteria at regional and National Levels: version 4.0. Gland, Switzerland and Cambridge, UKGoogle Scholar
  39. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506.  https://doi.org/10.1021/es9710870 CrossRefGoogle Scholar
  40. Jobling S, Coey S, Whitmore JG, Kime DE, Van Look KJW, McAllister BG, Beresford N, Henshaw AC, Brighty G, Tyler CR, Sumpter JP (2002) Wild intersex roach (Rutilus rutilus) have reduced fertility1. Biol Reprod 67:515–524.  https://doi.org/10.1095/biolreprod67.2.515 CrossRefPubMedGoogle Scholar
  41. Johnson R, Wolf J, Braunbeck T (2010) OECD guidance document for the diagnosis of endocrine-related histopathology of fish gonads. Organisation for Economic Cooperation and Development. ParisGoogle Scholar
  42. Kaptaner B, Kankaya E, Dogan A, Durmuş A (2016) Alterations in histology and antioxidant defense system in the testes of the Lake Van fish (Alburnus tarichi Güldenstädt, 1814). Environ Monit Assess 188:474–415.  https://doi.org/10.1007/s10661-016-5476-z CrossRefPubMedGoogle Scholar
  43. Kellock KA, Moore AP, Bringolf RB (2018) Chronic nitrate exposure alters reproductive physiology in fathead minnows. Environ Pollut 232:322–328.  https://doi.org/10.1016/j.envpol.2017.08.004 CrossRefPubMedGoogle Scholar
  44. Kidd KA, Paterson MJ, Rennie MD, Podemski CL, Findlay DL, Blanchfield PJ, Liber K (2014) Direct and indirect responses of a freshwater food web to a potent synthetic oestrogen. Phil Trans R Soc B Biol Sci 369:20130578.  https://doi.org/10.1098/rstb.2013.0578 CrossRefGoogle Scholar
  45. Kim S, Jung D, Kho Y, Choi K (2014) Effects of benzophenone-3 exposure on endocrine disruption and reproduction of japanese medaka (Oryzias latipes)—a two generation exposure study. Aquat Toxicol 155:244–252.  https://doi.org/10.1016/j.aquatox.2014.07.004 CrossRefPubMedGoogle Scholar
  46. Kuster M, López de Alda MJ, Hernando MD, Petrovic M, Martín-Alonso J, Barceló D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol 358:112–123.  https://doi.org/10.1016/j.jhydrol.2008.05.030 CrossRefGoogle Scholar
  47. Lavado R, Thibaut R, Raldua D, Martín R, Porte C (2004) First evidence of endocrine disruption in feral carp from the Ebro River. Toxicol Appl Pharmacol 196:247–257CrossRefGoogle Scholar
  48. Lefebvre C (2016) Presence, bioconcentration and fate of galaxolide and tonalide fragrances in the North Saskatchewan River, Edmonton. Ottawa. Dissertation, University of Ottawa. http://hdl.handle.net/10393/35105
  49. Leino RL, Jensen KM, Ankley GT (2005) Gonadal histology and characteristic histopathology associated with endocrine disruption in the adult fathead minnow (Pimephales promelas). Environ Toxicol Pharmacol 19:85–98.  https://doi.org/10.1016/j.etap.2004.05.010 CrossRefPubMedGoogle Scholar
  50. Liang X, Wang M, Chen X, Zha J, Chen H, Zhu L, Wang Z (2014) Endocrine disrupting effects of benzotriazole in rare minnow (Gobiocypris rarus) in a sex-dependent manner. Chemosphere 112:154–162.  https://doi.org/10.1016/j.chemosphere.2014.03.106 CrossRefPubMedGoogle Scholar
  51. Maceda-Veiga A, Monroy M, Navarro E, Viscor G, de Sostoa A (2013) Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Sci Total Environ 449:9–19.  https://doi.org/10.1016/j.scitotenv.2013.01.012 CrossRefPubMedGoogle Scholar
  52. Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40:5811–5816.  https://doi.org/10.1021/es0607741 CrossRefPubMedGoogle Scholar
  53. Matamoros V, Jover E, Bayona JM (2010a) Part-per-trillion determination of pharmaceuticals, pesticides, and related organic contaminants in river water by solid-phase extraction followed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Anal Chem 82:699–706.  https://doi.org/10.1021/ac902340e CrossRefPubMedGoogle Scholar
  54. Matamoros V, Jover E, Bayona JM (2010b) Occurrence and fate of benzothiazoles and benzotriazoles in constructed wetlands. Water Sci Technol 61:191–198.  https://doi.org/10.2166/wst.2010.797 CrossRefPubMedGoogle Scholar
  55. Maxwell LB, Dutta HM (2005) Diazinon-induced endocrine disruption in bluegill sunfish, Lepomis macrochirus. Ecotoxicol Environ Saf 60:21–27.  https://doi.org/10.1016/j.ecoenv.2003.12.015 CrossRefPubMedGoogle Scholar
  56. Mekonnen MM, Hoekstra YA (2016) Four billion people experience water scarcity. Sci Adv 2:1–7.  https://doi.org/10.1126/sciadv.1500323 CrossRefGoogle Scholar
  57. Mihaich E, Rhodes J, Wolf J, van der Hoeven N, Dietrich D, Hall AT, Caspers N, Ortego L, Staples C, Dimond S, Hentges S (2012) Adult fathead minnow, Pimephales promelas, partial life-cycle reproductive and gonadal histopathology study with bisphenol A. Environ Toxicol Chem 31:2525–2535.  https://doi.org/10.1002/etc.1976 CrossRefPubMedGoogle Scholar
  58. Mintram KS, Brown AR, Maynard SK, Thorbek P, Tyler CR (2018) Capturing ecology in modeling approaches applied to environmental risk assessment of endocrine active chemicals in fish. Crit Rev Toxicol 48:109–120.  https://doi.org/10.1080/10408444.2017.1367756 CrossRefPubMedGoogle Scholar
  59. Nash JP, Kime DE, Van der Ven LTM, Wester PW, Brion F, Maack G, Stahlschmidt-Allner P, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112:1725–1733.  https://doi.org/10.1289/ehp.7209 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Osorio V, Larrañaga A, Aceña J, Pérez S, Barceló D (2016) Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Sci Total Environ 540:267–277.  https://doi.org/10.1016/j.scitotenv.2015.06.143 CrossRefPubMedGoogle Scholar
  61. R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Avaible at: https://www.R-project.org/
  62. Schmitt CJ, Dethloff GM (2000) biomonitoring of environment status and trends (BEST) program: selected methods for monitoring chemical contaminants in aquatic ecosystem. US geological survey information and technology report USGS/ BRD/ITR-2000-0005. 81pp. Columbia, MOGoogle Scholar
  63. Scott AP, Sumpter JP, Stacey N (2010) The role of the maturation-inducing steroid, 17,20 beta-dihydroxypregn-4-en-3-one, in male fishes: a review. J Fish Biol 76:183–224. https://doi.org/.  https://doi.org/10.1111/j.1095-8649.2009.02483.x CrossRefPubMedGoogle Scholar
  64. Smith RJF (1978) Seasonal changes in the histology of the gonads and dorsal skin of the fathead minnow, Pimephales promelas. Can J Zool 56:2103–2109.  https://doi.org/10.1139/z78-285 CrossRefGoogle Scholar
  65. Solé M, Raldua D, Piferrer F, Barceló D, Porte C (2003) Feminization of wild carp, Cyprinus carpio, in a polluted environment: plasma steroid hormones, gonadal morphology and xenobiotic metabolizing system. Comp Biochem Physiol - C Toxicol Pharmacol 136:145–156.  https://doi.org/10.1016/S1532-0456(03)00192-3 CrossRefPubMedGoogle Scholar
  66. Staples CA, Tilghman Hall A, Friederich U, Caspers N, Klecka GM (2011) Early life-stage and multigeneration toxicity study with bisphenol A and fathead minnows (Pimephales promelas). Ecotoxicol Environ Saf 74:1548–1557.  https://doi.org/10.1016/j.ecoenv.2011.05.010 CrossRefPubMedGoogle Scholar
  67. Sumpter JP, Johnson AC (2005) Lessons from Endocrine Disruption and Their Application to Other Issues Concerning Trace Organics in the Aquatic Environment. Environ Sci Technol 39(12):4321–4332CrossRefGoogle Scholar
  68. Tangtian H, Bo L, Wenhua L, Shin PKS, Wu RSS (2012) Estrogenic potential of benzotriazole on marine medaka (Oryzias melastigma). Ecotoxicol Environ Saf 80:327–332.  https://doi.org/10.1016/j.ecoenv.2012.03.020 CrossRefPubMedGoogle Scholar
  69. Tetreault GR, Bennett CJ, Shires K, Knight B, Servos MR, McMaster ME (2011) Intersex and reproductive impairment of wild fish exposed to multiple municipal wastewater discharges. Aquat Toxicol 104:278–290.  https://doi.org/10.1016/j.aquatox.2011.05.008 CrossRefPubMedGoogle Scholar
  70. Vajda AM, Barber LB, Gray JL, Lopez EM, Woodling JD, Norris DO (2008) Reproductive disruption in fish downstream from an estrogenic wastewater effluent. Environ Sci Technol 42:3407–3414.  https://doi.org/10.1021/es0720661 CrossRefPubMedGoogle Scholar
  71. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149.  https://doi.org/10.1016/S1382-6689(02)00126-6 CrossRefPubMedGoogle Scholar
  72. Venables WN, Ripley BD (2002) MASS: modern applied statistics with S. Springer Science & Media Inc., New YorkGoogle Scholar
  73. Vos JG, Dybing E, Greim HA, Ladefoged O, Lambré C, Tarazona JV, Brandt I, Vethaak AD (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71–133.  https://doi.org/10.1080/10408440091159176 CrossRefPubMedGoogle Scholar
  74. Woodling JD, Lopez EM, Maldonado TA, Norris DO, Vajda AM (2006) Intersex and other reproductive disruption of fish in wastewater effluent dominated Colorado streams. Comp Biochem Physiol - C Toxicol Pharmacol 144:10–15.  https://doi.org/10.1016/j.cbpc.2006.04.019 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Renewable Marine ResourcesInstitute of Marine Sciences (ICM-CSIC)BarcelonaSpain
  3. 3.Department of Cell Biology, Physiology and ImmunologyUniversity of BarcelonaBarcelonaSpain
  4. 4.Institute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain

Personalised recommendations