Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Protein and lipid requirements of three-spot cichlid Cichlasoma trimaculatum larvae

Abstract

Determination of the main nutritional requirements at different developmental stages is a prerequisite in the formulation of feeds for newly cultured fish species. In the present study, the lipid and protein requirements of larvae of a native Mexican fish, the three-spot cichlid Cichlasoma trimaculatum, were assessed using a two-factor experimental design that considered four protein (35, 40, 45, and 50%) and two lipid levels (16 and 22%) on growth, survival, and digestive enzyme activities. The best growth and feed efficiency results were obtained when larvae were fed diets including 45% protein and 22% lipids. Comprehensive evaluation of the profile of digestive enzymes using multivariate analysis also demonstrated significant differences in nutritional condition generated by varying inclusion of nutrients. Thus, an increase in protein led to an increase in alkaline protease activity and a reduction in leucine aminopeptidase activity, and the reduction of dietary lipid content led to a significant increase in lipase and trypsin enzymatic activities. Based on our results, C. trimaculatum larvae have a high capacity to hydrolyze both nutrients (protein and lipids) for the high digestive enzyme activities and increase their growth, particularly with a diet containing 45% protein and 22% lipids.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdel-Tawwab M, Ahmad MH, Khattab YAE, Shalaby AME (2010) Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 298:267–274. https://doi.org/10.1016/j.aquaculture.2009.10.027

  2. Ai QH, Zhao JZ, Mai KS, Xu W, Tan BP, Ma HM, Liufu ZG (2008) Optimal dietary lipid level for large yellow croaker (Pseudosciaena crocea) larvae. Aquac Nutr 14:515–522. https://doi.org/10.1111/j.1365-2095.2007.00557.x

  3. Alvarez-González CA, Civera-Cerecedo R, Ortiz-Galindo JL, Dumas S, Moreno-Legorreta M, Grayeb-Del Alamo T (2001) Effect of dietary protein level on growth and body composition of juvenile spotted sand bass, Paralabrax maculatofasciatus, fed practical diets. Aquaculture 194:151–159. https://doi.org/10.1016/S0044-8486(00)00512-3

  4. Alvarez-González CA, Moyano-López FJ, Civera-Cercedo R, Carrasco-Chávez V, Ortiz-Galindo J, Dumas S (2008) Development of digestive enzyme activity in larvae of spotted sand bass Palabrax maculatofasciatus. I biochemistry analysis. Fish Physiol Biochem 34:373–384. https://doi.org/10.1007/s10695-007-9197-7

  5. Álvarez-Lajonchère L, Chávez-Sánchez MC, Reina-Cáñez MA, Camacho-Hernández MA, Abdo-de la Parra MI, García-Aguilar N (2011) Evolución de la escala experimental a la piloto para las tecnologías de producción de juveniles de peces marinos en la unidad Mazatlán del CIAD. In: Ruiz Luna A, Berlanga Robles C, Betancourt Lozano M (eds) Cap 1 in: Avances en Acuicultura y Manejo Ambiental. Trillas, México, pp 17–38

  6. Amin MN, Carter CG, Katersky Barnes RS, Adams LR (2014) Protein and energy nutrition of brook trout (Salvelinus fontinalis) at optimal and elevated temperatures. Aquac Nutr 22:527–540. https://doi.org/10.1111/anu.12274

  7. Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89. https://doi.org/10.1085/jgp.22.1.79

  8. AOAC (2005) Official methods of analysis of AOAC International. AOAC International

  9. Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2(6):371–382. https://doi.org/10.1016/j.chom.2007.10.010

  10. Belitz HD, Grosch W, Schieberle P (2009) Amino acids, peptides, proteins. In: Food Chemistry. Springer, Berlin, Heidelberg, pp 12–15

  11. Bergmeyer HV (1974) Phosphatases methods of enzymatic analysis, vol 2. Academic Press, New York

  12. Bowyer JN, Qin JG, Stone DAJ (2013) Protein, lipid and energy requirements of cultured marine fish in cold, temperate and warm water. Rev Aquac 5:10–32. https://doi.org/10.1111/j.1753-5131.2012.01078.x

  13. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

  14. Cara JB, Moyano FJ, Cardenas S, Fernandez-Diaz C, Yúfera M (2003) Assessment of digestive enzyme activities during larval development of white bream. J Fish Biol 63:48–58. https://doi.org/10.1046/j.1095-8649.2003.00120.x

  15. Cara B, Moyano FJ, Zambonino-Infante JL, Fauvel C (2007a) Trypsin and chymotrypsin as indicators of nutritional status of post-weaned sea bass larvae. J Fish Biol 70:1798–1808. https://doi.org/10.1111/j.1095-8649.2007.01457.x

  16. Cara JB, Moyano FJ, Zambonino JL, Alarcón FJ (2007b) The whole amino acid profile as indicator of the nutritional condition in cultured marine fish larvae. Aquac Nutr 13:94–103. https://doi.org/10.1111/j.1365-2095.2007.00459.x

  17. Chatzifotis S, Panagiotidou M, Divanach P (2012) Effect of protein and lipid dietary levels on the growth of juvenile meagre (Argyrosomus regius). Aquac Int 20:91–98. https://doi.org/10.1007/s10499-011-9443-y

  18. Cho SH, Kim HS, Myung SH, Won-Gwan J, Choi J, Sang-Min L (2015) Optimum dietary protein and lipid levels for juvenile rockfish (Sebastes schlegeli, Hilgendorf 1880). Aquac Res 46:2954–2961. https://doi.org/10.1111/are.12450

  19. Comabella Y, Mendoza R, Aguilera C, Carrillo O, Hurtado A, García-Galano T (2006) Digestive enzyme activity during early larval development of the Cuban gar Atractosteus tristoechus. Fish Physiol Biochem 32:147–157. https://doi.org/10.1007/s10695-006-0007-4

  20. Dávila-Camacho CA, Galaviz-Villa I, Lango-Reynoso F, Castañeda-Chávez MR, Quiroga-Brahms C, Montoya-Mendoza J (2018) Cultivation of native fish in Mexico: cases of success. Rev Aquac Publish on line:1–14. https://doi.org/10.1111/raq.12259

  21. DelMar EG, Largman C, Broderick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320. https://doi.org/10.1016/S0003-2697(79)80013-5

  22. Deng DF, Ju ZY, Dominy W, Murashige R, Wilson RP (2011) Optimal dietary protein levels for juvenile Pacific threadfin (Polydactylus sexfilis) fed diets with two levels of lipid. Aquaculture 316:25–30

  23. DOF (2013) Carta Nacional Acuícola. Actualización 2ª. Edición. Secretaría de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación, pp. 33–112. Accessed 08 december 2017

  24. Erlanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278. https://doi.org/10.1016/0003-9861(61)90145-X

  25. Espinós FJ, Tomás A, Pérez LM, Balasch S, Jover M (2003) Growth of dentex fingerlings (Dentex dentex) fed diets containing different levels of protein and lipid. Aquaculture 218:479–490. https://doi.org/10.1016/S0044-8486(02)00313-7

  26. Fortin JS, Santamaria-Bouvier A, Lair S, Dallaire AD, Benoit-Biancamano M (2015) Anatomical and molecular characterization of the endocrine pancreas of a teleostean fish: Atlantic wolfish (Anarhichas lupus). Zool Stud 54:1–7. https://doi.org/10.1186/s40555-014-0093-4

  27. Gao W, Liu YJ, Tian LX, Mai KS, Liang GY, Yang HJ, Huai MY, Luo WJ (2011) Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish: a comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Orechromis niloticus x O. aureus). Aquac Nutr 17:2–12. https://doi.org/10.1111/j.1365-2095.2009.00698.x

  28. German DP, Nagle BC, Villeda JM, Ruiz AM, Thomson AW, Contreras-Balderas S, Evans DH (2010) Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprinidae): effects on gut size and digestive physiology. Physiol Biochem Zool 83(1):1–18. https://doi.org/10.1086/648510

  29. Ghosh SK, Chakrabarti P (2016) Comparative studies on histology and histochemistry of páncreas between Labeo calbasu (Hamilton, 1822) and Mystus gulio (Hamilton, 1822). Iran J Ichthyol 3(4):251–265. https://doi.org/10.7508/iji.2016.02.015

  30. Gisbert E, Piedrahita RH, Conklin DE (2004) Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture 232:455–470. https://doi.org/10.1016/S0044-8486(03)00457-5

  31. Gisbert E, Giménez G, Fernández I, Kotzamanis Y, Estévez A (2009) Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 287:381–387. https://doi.org/10.1016/j.aquaculture.2008.10.039

  32. Gisbert E, Morais S, Moyano FJ (2013) Feeding and digestion. In: Qin JG (ed) Larval fish aquaculture. Nova Publishers, New York, pp 73–124

  33. Günther A (1867) On the fishes of the states of Central America, founded upon specimens collected in fresh and marine waters of various parts of that country by Messrs. Salvin, Godman and Capt. J M Dow Proc Zool Soc London 1866(3):600–604

  34. Hamre K, Yúfera M, Rønnestad I, Boglione C, Conceição LEC, Izquierdo M (2013) Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev Aquac 5:S26–S58. https://doi.org/10.1111/j.1753-5131.2012.01086.x

  35. Kim KH, Horn MH, Sosa AE, German DP (2014) Sequence and expression of an α-amylase gene in four related species of prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and species-level effects. J Comp Physiol Biochem Syst Environ Physiol 184B:221–234. https://doi.org/10.1007/s00360-013-0780-1

  36. Kissil GW, Lupatsch I, Hardy RW (2000) Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata. Aquac Nutr 31:595–601. https://doi.org/10.1046/j.1365-2109.2000.00477.x

  37. Kotzamanis YP, Gisbert E, Gatesoupe FJ, Zambonino-Infante J, Cahu C (2007) Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol 147A:205–214. https://doi.org/10.1016/j.cbpa.2006.12.037

  38. Kumar S, Sahu NP, Ranjan A (2018) Feeding de-oiled rice bran (DORB) to Rohu, Labeo rohita: effect of varying dietary protein and lipid level on growth, body composition, and insulin like growth factor (IGF) expression. Aquaculture 492:59–66. https://doi.org/10.1016/j.aquaculture.2018.04.001

  39. Kunitz M (1947) Crystalline soybean trypsin inhibitor II. General properties. J Gen Physiol 30:291–310

  40. Lazo J, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205. https://doi.org/10.1016/j.aquaculture.2007.01.043

  41. Lazo JP, Darias MJ, Gisbert E (2011) Ontogeny of the digestive tract. In: Holt GJ (ed) Larval fish nutrition. John Wiley & Sons, Inc, pp 3–46

  42. Li S, Mai K, Xu W, Yuan Y, Zhang Y, Zhou H, Ai Q (2016) Effects of dietary lipid level on growth, fatty acid composition, digestive enzymes and expression of some lipid metabolism related genes of orange spotted grouper larvae (Epinephelus coioides H.). Aquac Res 47:2481–2495. https://doi.org/10.1111/are.12697

  43. Li-Gen Z, Bing-Xin L, Le-Chang S, Kenji H, Wen-Jin S, Min-Jie C (2010) Identification of an aminopeptidase from the skeletal muscle of grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 36:953–962. https://doi.org/10.1007/s10695-009-9372-0

  44. Maraux S, Louvard D, Baratti J (1973) The aminopeptidase from hog-intestinal brush border. Biochim Biophys Acta 321:282–295. https://doi.org/10.1016/0005-2744(73)90083-1

  45. Martínez-Palacios CA, Harfush-Melendez M, Chavez-Sánchez C (1996) The optimum dietary protein level for the Mexican cichlid Cichlasoma urophthalmus (Gunther): a comparison of estimates derived from experiments using fixed-rate feeding and satiation feeding. Aquac Nutr 2:11–20. https://doi.org/10.1111/j.1365-2095.1996.tb00003.x

  46. Martínez-Palacios CA, Ríos-Durán MG, Ambriz-Cervantes L, Jauncey KJ, Ross LG (2007) Dietary protein requirement of juvenile Mexican silverside (Menidia estor Jordan 1879), a stomachless zooplanktophagous fish. Aquac Nutr 13:304–310. https://doi.org/10.1111/j.1365-2095.2007.00479.x

  47. Miller RR, Minckley WL, Norris SM (2005) Freshwater fishes of México. The Chicago University, Press, Illinois

  48. Mohanta KN, Subramanian S, Korikanthimath VS (2013) Effect of dietary protein and lipid levels on growth, nutrient utilization and whole-body composition of blue gourami, Trichogaster trichopterus fingerlings. J Anim Physiol Anim Nutr 97:126–136. https://doi.org/10.1111/j.1439-0396.2011.01258.x

  49. Mohseni M, Pourkazemi M, Hossensi MR, Hassani MHS, Bai SC (2013) Effects of the dietary protein levels and the protein to energy ratio in sub-yearling Persian sturgeon, Acipenser persicus (Borodin). Aquac Res 44:378–387. https://doi.org/10.1111/j.1365-2109.2011.03041.x

  50. Moyano FJ (2006) Bioquímica Digestiva en Especies Acuicultivadas: Aplicaciones en Nutrición. En editores: Cruz, S.E., Ricque, M.R., Tapia, S.M., Nieto, L.M.G., Villareal, C.D.A., Puello, C.A.C., y García, O.A. Avances en Nutrición Acuícola VIII. VIII Simposium Internacional de Nutrición Acuícola. 15–17 Noviembre. Universidad Autónoma de Nuevo León, México. ISBN 970-694-333-5

  51. Moyano FJ, Díaz M, Alarcón FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130. https://doi.org/10.1111/j.1365-2109.2011.03041.x

  52. Murray HM, Gallant JW, Perez-Casanova JC, Johnson SC, Douglas SE (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62:816–833. https://doi.org/10.1046/j.1095-8649.2003.00067.x

  53. Navarro-Guillén C, Moyano FJ, Yúfera M (2015) Diel food intake and digestive enzyme production patterns in Solea senegalensis larvae. Aquaculture 435:33–42. https://doi.org/10.1016/j.aquaculture.2014.09.017

  54. Ng WK, Abdullah N, De Silva SS (2008) The dietary protein requirement of the Malaysian mahseer, Tor tambroides (Bleeker), and the lack of protein-sparing action by dietary lipid. Aquaculture 284:201–206. https://doi.org/10.1016/j.aquaculture.2008.07.051

  55. Novelli B, Otero-Ferrer F, Diaz M, Socorro JA, Caballero MJ, Molina-Domínguez L, Moyano FJ (2016) Digestive biochemistry as indicator of the nutritional status during early development of the long snouted seahorse (Hippocampus reidi). Aquaculture 464:196–204. https://doi.org/10.1016/j.aquaculture.2016.06.037

  56. Okorie E, Kim Y, Lee S, Bae J, Yoo JH, Han K, Bai SC, Park G, Choi S (2007) Reevaluation of the dietary protein requirements and optimum dietary protein to energy ratios in Japanese eel, Anguilla japonica. J World Aquacult Soc 38:418–426. https://doi.org/10.1111/j.1749-7345.2007.00113.x

  57. Qiang J, He J, Yang H, Yi-Lan S, Yi-Fan T, Xu P, Zhi-Xiang Z (2017) Dietary lipid requirements of larval genetically improved farmed tilapia, Oreochromis niloticus (L.), and effects on growth performance, expression of digestive enzyme genes, and immune response. Aquac Res 48:2827–2840. https://doi.org/10.1111/are.13117

  58. Rahimnejad S, Bang IC, Park LY, Sade A, Choi J, Lee SM (2015) Effects of dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile hybrid grouper, Epinephelus fuscoguttatus × E. lanceolatus. Aquaculture 446:283–289. https://doi.org/10.1111/j.1365-2095.2012.00972.x

  59. Říčan O, Piálek L, Dragová K, Novák J (2016) Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification. Vert Zool 66(1):1–102

  60. Robyt JF, Whelan WJ (1968) The a-amylase. In: Radley JA (ed) Starch and its derivates. Chapman and Hall, London, pp 430–497

  61. Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac 5:S59–S98. https://doi.org/10.1111/raq.12010

  62. Ross LG, Martínez-Palacios CA, Morales EJ (2008) Developing native fish species for aquaculture: the interacting demands of biodiversity, sustainable aquaculture and livelihoods. Aquac Res 39:675–683. https://doi.org/10.1111/j.1365-2109.2008.01920.x

  63. Rotllant G, Moyano FJ, Andrés M, Estévez A, Díaz M, Gisbert E (2010) Effect of delayed first feeding on larval performance of the spider crab Maja brachydactyla assessed by digestive enzyme activities and biometric parameters. Mar Biol 157:2215–2227. https://doi.org/10.1007/s00227-010-1487-4

  64. Saavedra M, Conceição LEC, Pousão-Ferreira P, Dinis MT (2006) Amino acid profiles of Diplodus sargus (L., 1758) larvae: implications for feed formulation. Aquaculture 261:587–593. https://doi.org/10.1016/j.aquaculture.2006.08.016

  65. Saavedra M, Grade A, Candeias-Mendes A, Pereira TG, Teixeira B, Yúfera M, Conceição LEC, Mendes R, Pousão-Ferreira P (2016) Different dietary protein levels affect meagre (Argyrosomus regius) larval survival and muscle cellularity. Aquaculture 450:89–94. https://doi.org/10.1016/j.aquaculture.2015.07.004

  66. Sankian Z, Khosravi S, Yi-Oh K, Sang-Min L (2017) Effect of dietary protein and lipid level on growth, feed utilization, and muscle composition in golden mandarin fish Siniperca scherzeri. Fish Aquatic Scie 20:2–6. https://doi.org/10.1186/s41240-017-0053-0

  67. Schulzi C, Böhm M, Wirth M, Rennert B (2007) Effect of dietary protein on growth, feed conversion, body composition and survival of pike perch fingerlings (Sander lucioperca). Aquac Nutr 13:373–380. https://doi.org/10.1111/j.1365-2095.2007.00487.x

  68. Shearer KD (1994) Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119:63–88. https://doi.org/10.1590/S0100-204X2017000800008

  69. Silva P, Andrade CAP, Timóteo FA (2006) Dietary protein, growth, nutrient utilization and body composition of juvenile blackspot seabream, Pagellus bogaraveo (Brunnich). Aquac Res 37:1007–1014

  70. Su-Hua C, Min-Jie C, Jian-Zhen H, Guo-Ping W (2011) Identification of a puromycin-sensitive aminopeptidase from zebrafish (Danio rerio). Comp Biochem Physiol 159B:10–17. https://doi.org/10.1016/j.cbpb.2011.01.005

  71. Suzer CH, Kamacı O, Coban D, Yıldırım S, Fırat K, Saka S (2013) Functional changes in digestive enzyme activities of meagre (Argyrosomus regius; Asso, 1801) during early ontogeny. Fish Physiol Biochem 39:967–977. https://doi.org/10.1007/s10695-012-9755-5

  72. Takakuwa F, Fukada H, Hosokawa H, Masumoto T (2006) Optimum digestible protein and energy levels and ratio for greater amberjack Seriola dumerili (Risso) fingerling. Aquac Res 37:1532–1539. https://doi.org/10.1111/j.1365-2109.2006.01590.x

  73. Tengjaroenkul B, Smith BJ, Smith SA, Chatreewongsin U (2002) Ontogenic development of the intestinal enzymes of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 211:241–251. https://doi.org/10.1016/S0044-8486(01)00888-2

  74. Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732. https://doi.org/10.1111/j.1365-2109.2008.02150.x

  75. Toledo-Solís FJ, Uscanga-Martínez A, Guerrero-Zárate R, Márquez-Couturier G, Martínez-García R, Camarillo-Coop S, Perales-García N, Rodríguez-Valencia W, Gómez-Gómez MA, Álvarez-González CA (2015) Changes on digestive enzymes during initial ontogeny in the three-spot cichlid Cichlasoma trimaculatum. Fish Physiol Biochem 41:267–279. https://doi.org/10.1007/s10695-014-0023-8

  76. Toledo-Solís FJ, Márquez-Couturier G, Uscanga-Martínez A, Guerrero-Zárate R, Perales-García N, Martínez-García R, Álvarez-González CA (2016) Partial characterization of digestive proteases of the three-spot cichlid Cichlasoma trimaculatum (Günter 1867). Aquac Nutr 22:1230–1238. https://doi.org/10.1111/anu.12329

  77. Uscanga-Martinez A, Álvarez-González CA, Contreras-Sánchez WM, Marquez-Couturier G, Civera-Cerecedo R, Nolasco-Soria H, Hernández-Llamas A, Goytortua-Bores E, Moyano FJ (2012) Protein requirement in masculinized and non-masculinized juveniles of bay snook Petenia splendida. Hidrobiol 22:219–228

  78. Uscanga-Martínez A, Velázquez-Velázquez E, Gómez-Gómez MA, Perales-García N, Rodríguez-Valencia W, Toledo-Solís FJ, López-Tapia CL, Álvarez-González CA, Aguilar-López E (2015) Avances en el cultivo de la mojarra tahuina Cichlasoma trimaculatum (Actinopterygii: Perciformes: Cichlidae) en la Reserva de la Biosfera La Encrucijada, Chiapas. In: Velázquez-Velázquez E, Romero-Berny EI, Rivera-Velázquez G (Eds.) Reserva de la Biósfera La Encrucijada, dos décadas de investigación para su conservación. Colección Jaguar. Universidad de Ciencias y Artes de Chiapas. México

  79. Versaw W, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:232–254. https://doi.org/10.1111/j.1365-2621.1989.tb05159.x

  80. Villanueva J, Vanacore R, Goicoechea O, Amthauer R (1997) Intestinal alkaline phosphatase of the fish Cyprinus carpio: regional distribution and membrane association. J Exp Zool 279(4):347–355. https://doi.org/10.1002/(sici)1097-010x(19971101)279:4<347::aid-jez4>3.0

  81. Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyern HJ (ed) Methods of enzymatic analysis, vol V. Verlag Chemie, Weinham, pp 270–277

  82. Wang YY, Ma GJ, Shi Y, Liu DS, Guo JX, Yang YH, Chen CD (2013) Effects of dietary protein and lipids levels on growth, feed utilization and body composition in Pseudobagrus ussuriensis fingerlings. Aquac Nutr 19:390–398. https://doi.org/10.1111/j.1365-2095.2012.00972.x

  83. Wu XY, Gatlin DM (2014) Effects of altering dietary protein content in morning and evening feedings on growth and ammonia excretion of red drum (Sciaenops ocellatus). Aquaculture 434:33–37. https://doi.org/10.1016/j.aquaculture.2014.07.019

  84. Xu S, Zhang X, Liu P (2018) Lipid droplet proteins and metabolic diseases. BBA - Mol Bas Dises 1864:1968–1983. https://doi.org/10.1186/s12944-017-0521-7

  85. Yúfera M, Fernandez-Díaz C, Pascual E (2005) Food microparticles for larval fish prepared by internal gelation. Aquaculture 248:253–262. https://doi.org/10.1016/j.aquaculture.2005.04.026

  86. Yúfera M, Moyano FJ, Astola A, Pousão-Ferreira P, Martínez-Rodríguez G (2012) Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression. PLoS One 7(3):e33687. https://doi.org/10.1371/journal.pone.0033687

  87. Yúfera M, Moyano FJ, Martínez-Rodríguez G (2018) The digestive function in developing fish larvae and fry. From molecular gene expression to enzymatic activity. In: Yúfera M (ed) Emerging issues in fish larvae research. Springer, Cham, pp 51–86

  88. Zambonino-Infante JL, Cahu CL (1999) High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J Nutr 129:1195–1200. https://doi.org/10.1093/jn/129.6.1195

  89. Zambonino-Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol 130C:477–487. https://doi.org/10.1016/S1532-0456(01)00274-5

  90. Zambonino-Infante JL, Gisbert E, Sarasquete C, Navarro I, Gutíerrez J, Cahu CL (2008a) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEP, Bureau D, Kapoor BG (eds) Feeding and digestive functions of fishes. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 281–348

  91. Zambonino-Infante JL, Gisbert E, Sarasquete S, Navarro I, Gutiérrez J, Cahu CL (2008b) Ontogeny and physiology of the digestive system of marine fish larvae. In: Cyrino JEP, Bureau D, Kapoor BG (eds) Feeding and digestive functions in fishes. Science Publishers, Enfield, NH, pp 281–348

  92. Zhang Y, Sun Z, Wang A, Ye C, Zhu X (2017) Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata ♀ × Channa argus ♂) fingerlings. Aquaculture 468:1–9. https://doi.org/10.1016/j.aquaculture.2016.09.052

  93. Zhao L, Budge SM, Ghaly AE, Brooks MS, Dave D (2011) Extraction, purification and characterization of fish pepsin: a critical review. J Food Process Technol 2:126. https://doi.org/10.4172/2157-7110.1000126

  94. Zheng K, Zhu X, Han D, Yang Y, Lei W, Xie S (2010) Effects of dietary lipid levels on growth, survival and lipid metabolism during early ontogeny of Pelteobagrus vachelli larvae. Aquaculture 299:121–127. https://doi.org/10.1016/j.aquaculture.2009.11.028

Download references

Acknowledgements

To CONACYT for the doctorate studies fellowship 2015, fellowship number 255388. Also to William Rodríguez Valencia and Mario Alberto Gómez Gómez technicians the Centro de Investigaciones Costeras ICBiol-UNICACH, for its support on experiment development.

Author information

Correspondence to C. A. Álvarez-González.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toledo-Solís, F.J., Martínez-García, R., Galaviz, M.A. et al. Protein and lipid requirements of three-spot cichlid Cichlasoma trimaculatum larvae. Fish Physiol Biochem 46, 23–37 (2020). https://doi.org/10.1007/s10695-019-00692-9

Download citation

Keywords

  • Nutritional requirements
  • Cichlasoma trimaculatum
  • Larvae
  • Proteins
  • Lipids
  • Digestive enzymes