Advertisement

The effect of a multi-strain probiotic on growth performance, non-specific immune response, and intestinal health of juvenile turbot, Scophthalmus maximus L.

  • Zequn Li
  • Ning Bao
  • Tongjun RenEmail author
  • Yuzhe HanEmail author
  • Zhiqiang Jiang
  • Zhuoan Bai
  • Yanan Hu
  • Jingyun Ding
Article

Abstract

Probiotic is well known because of its health benefit on the host, including improve growth, treat disease, and enhance immunity. Currently, probiotic has been widely used in aquaculture. However, there is little information about the effect of probiotic on turbot. Therefore, an effort was made to explore the effect of a multi-strain probiotic on growth performance, non-specific immune response, and intestinal health of juvenile turbot, Scophthalmus maximus L. One hundred eighty juvenile turbot (20.04 ± 0.23 g) were randomly divided into three groups (T0, T1, T2), and fed diet were formulated to contain 0%, 1%, and 5% multi-strain probiotic, respectively. Sixty days after the feeding experiment, the growth performance, body composition, enzyme activities, and intestinal microorganism of turbot were analyzed. T2 and T1 showed better growth performance and significant higher (P < 0.05) enzyme activities than T0 (except lysozyme). Moreover, the IV (intestinal villus), IW (intestinal wall), and GC (goblet cell) were well modulated in probiotic treatments. Furthermore, Lactobacillus was found colonized in the intestine of the group fed with 5% multi-strain probiotic. These results suggested adding dietary multi-strain probiotic could positively affect for turbot aquaculture.

Keywords

Probiotic Intestinal health Microbiota Scophthalmus maximus 

Notes

Funding information

This work was funded by the Public Science and Technology Research Funds Project of Ocean of the State Oceanic Administration of the People’s Republic of China (Grant No. 201405003) and the Science and Technology Research Funds Project of the Dalian City Oceanic and Fishery Administration, Liaoning Province, China (Grant No. 20140101). Thanks to Dalian B&T biotechnology Co., Ltd. for multi-strain probiotic.

References

  1. Al-Dohail MA, Hashim R, Aliyu-Paiko M (2010) Effects of the probiotic, Lactobacillus acidophilus , on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish ( Clarias gariepinus, Burchell 1822) fingerling. Aquac Res 40:1642–1652CrossRefGoogle Scholar
  2. Ambas I, Suriawan A, Fotedar R (2013) Immunological responses of customised probiotics-fed marron, Cherax tenuimanus, (Smith 1912) when challenged with Vibrio mimicus. Fish Shellfish Immunol 35:262–270CrossRefGoogle Scholar
  3. Bao N, Ren T, Han Y, Wang F, Chen F, Jiang Z (2017) Alteration of growth, intestinal Lactobacillus, selected immune and digestive enzyme activities in juvenile sea cucumber Apostichopus japonicus, fed dietary multiple probiotics. Aquacult Int 25:1721–1731CrossRefGoogle Scholar
  4. Blottière HM, Buecher B, Galmiche JP, Cherbut C (2003) Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc 62:101–106CrossRefGoogle Scholar
  5. Bolasina S, Perez A, Yamashita Y (2006) Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture 252:503–515CrossRefGoogle Scholar
  6. Bowman J, Nowak BF (2004) Salmonid gill bacteria and their relationship to amoebic gill disease (AGD). J Fish Dis 27(8):483–492CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitie s of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  8. Branson E, Riaza A, Álvarez-Pellitero P (2010) Myxosporean infection causing intestinal disease in farmed turbot, Scophthalmus maximus (L.), (Teleostei: Scophthalmidae). J Fish Dis 22:395–399CrossRefGoogle Scholar
  9. Carnevali O, De VL, Sulpizio R, Gioacchini G, Olivotto I, Silvi S, Cresci A (2006) Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture 258:430–438CrossRefGoogle Scholar
  10. Cerezuela R, Fumanal M, Tapiapaniagua ST, Meseguer J, Moriñigo MA, Esteban MA (2012) Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res 350:477–489CrossRefGoogle Scholar
  11. Cerezuela R, Fumanal M, Tapiapaniagua ST, Meseguer J, Moriñigo MÁ, Esteban MÁ (2013) Changes in intestinal morphology and microbiota caused by dietary administration of inulin and Bacillus subtilis in gilthead sea bream (Sparus aurata L.) specimens. Fish Shellfish Immunol 34:1063–1070CrossRefGoogle Scholar
  12. De Moreno de LeBlanc A, Leblanc JG (2014) Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J Gastroenterol 20:16518–16528CrossRefGoogle Scholar
  13. Deplancke B, Gaskins HR (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73:1131S–1141SCrossRefGoogle Scholar
  14. Dong XH, Geng X, Tan BP, Yang QH, Chi SY, Liu HY, Liu XQ (2015) Effects of dietary immunostimulant combination on the growth performance, no-specific immunity and disease resistance of cobia, Rachycentron canadum (Linnaeus). Aquac Res 46:840–849CrossRefGoogle Scholar
  15. Dridi S, Romdhane MS, Elcafsi MH (2007) Seasonal variation in weight and biochemical composition of the Pacific oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia. Aquaculture 263:238–248CrossRefGoogle Scholar
  16. Dyková I, Figueras A, Novoa B, Casal JF (1998) Paramoeba sp., an agent of amoebic gill disease of turbot Scophthalmus maximus. Dis Aquat Org 33:137–141CrossRefGoogle Scholar
  17. Elharoun ER, Amas G, Kabir Chowdhury MA (2010) Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquac Res 37:1473–1480CrossRefGoogle Scholar
  18. Engstad RE, Robertsen B, Frivold E (1992) Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish Shellfish Immunol 2:287–297CrossRefGoogle Scholar
  19. Esteban MA, Cordero H, Martínez-Tomé M, Jiménez-Monreal AM, Bakhrouf A, Mahdhi A (2014) Effect of dietary supplementation of probiotics and palm fruits extracts on the antioxidant enzyme gene expression in the mucosae of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 39(2):532–540CrossRefGoogle Scholar
  20. Food and Agriculture Organization/World Health Organization (FAO/WHO) (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation. http://www.fao.org/3/a-a0512e.pdf
  21. Fečkaninová A, Koščová J, Mudroňová D, Popelka P, Toropilová J (2017) The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 469:1–8CrossRefGoogle Scholar
  22. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and biology of ageing. Nature 408:239–247CrossRefGoogle Scholar
  23. Fuller R (1989) Probiotics in manc and animal. J Appl Bacteriol 66:365–378CrossRefGoogle Scholar
  24. Genten F, Terwinghe E, Danguy A (2009) Atlas of fish histology. Crc Press, Boca RatonGoogle Scholar
  25. Gersemann M, Wehkamp J, Stange EF (2012) Innate immune dysfunction in inflammatory bowel disease. J Intern Med 271:421–428CrossRefGoogle Scholar
  26. Gohar YM, El-Naggar MMA, Soliman MK, Barakat KM (2010) Characterization of marine Burkholderia cepacia antibacterial agents. J Nat Prod 3:86–94Google Scholar
  27. Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191:259–270CrossRefGoogle Scholar
  28. Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143CrossRefGoogle Scholar
  29. Grisez L, Chair M, Sorgeloos P, Ollevier FP (1996) Mode of infection and spread of Vibrio anguillarum in turbot Scophthalmus maximus larvae after oral challenge through life feed. Dis Aquat Org 26:181–187CrossRefGoogle Scholar
  30. Guardiola FA, Porcino C, Cerezuela R, Cuesta A, Faggio C, Esteban MA (2016) Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish Immunol 52:298–308CrossRefGoogle Scholar
  31. Harrison OJ, Maloy KJ (2011) Innate immune activation in intestinal homeostasis. J Innate Immun 3:585–593CrossRefGoogle Scholar
  32. He S, Zhang Y, Xu L, Yang Y, Marubashi T, Zhou Z, Yao B (2013) Effects of dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂. Aquaculture 412-413:125–130CrossRefGoogle Scholar
  33. Héctor L, Barrera TC, Mejía J, Castro G, Del Carmen M, Monroy Dosta C, De Lara Andrade R, Sotres JAM (2009) Effects of the commercial probiotic Lactobacillus casei on the growth, protein content of skin mucus and stress resistance of juveniles of the Porthole livebearer Poecilopsis gracilis (Poecilidae). Aquac Nutr 16(4):407–411CrossRefGoogle Scholar
  34. Ichikawa H, Kuroiwa T, Inagaki A, Shineha R, Nishihira T, Satomi S, Sakata T (1999) Probiotic bacteria stimulate gut epithelial cell proliferation in rat. Dig Dis Sci 44:2119–2123CrossRefGoogle Scholar
  35. Ingerslev HC, Jørgensen LG, Strube ML, Larsen N, Dalsgaard I, Boye M, Madsen L (2014) The development of the gut microbiota in rainbow trout ( Oncorhynchus mykiss ) is affected by first feeding and diet type. Aquaculture 424-425:24–34CrossRefGoogle Scholar
  36. Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25:633–642CrossRefGoogle Scholar
  37. Kim DH, Austin B (2006) Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol 21:513–524CrossRefGoogle Scholar
  38. Kim JS, Ingale SL, Kim YW, Kim KH, Sen S, Ryu MH, Lohakare J, Kwon IK, Chae BJ (2011) Effect of supplementation of multi-microbe probiotic product on growth performance, apparent digestibility, cecal microbiota and small intestinal morphology of broilers. J Anim Physiol Anim Nutr 96(4):618–626CrossRefGoogle Scholar
  39. Lazado CC, Caipang CMA, Gallage S, Brinchmann MF, Kiron V (2010) Expression profiles of genes associated with immune response and oxidative stress in Atlantic cod, Gadus morhua head kidney leukocytes modulated by live and heat-inactivated intestinal bacteria. Comp Biochem Physiol, Part B: Biochem Mol Biol 155:249–255CrossRefGoogle Scholar
  40. Li J, Tan B, Mai K (2009) Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp ( Litopenaeus vannamei ). Aquaculture 291:35–40CrossRefGoogle Scholar
  41. Liu CH, Chiu CH, Wang SW, Cheng W (2012) Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 33:699–706CrossRefGoogle Scholar
  42. Liu W, Ren P, He S, Xu L, Yang Y, Gu Z, Zhou Z (2013) Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains. Fish Shellfish Immunol 35:54–62CrossRefGoogle Scholar
  43. Liu Y, He G, Wang Q, Mai K, Xu W, Zhou H (2014) Hydroxyproline supplementation on the performances of high plant protein source based diets in turbot ( Scophthalmus maximus L.). Aquaculture 433:476–480CrossRefGoogle Scholar
  44. Losada AP, Bermúdez R, Faílde LD, Giancamillo AD, Domeneghini C, Quiroga MI (2014) Effects of Enteromyxum scophthalmi experimental infection on the neuroendocrine system of turbot, Scophthalmus maximus (L.). Fish Shellfish Immunol 40(2):577–583CrossRefGoogle Scholar
  45. Maeda M, Shibata A, Biswas G, Korenaga H, Kono T, Itami T, Sakai M (2014) Isolation of lactic acid Bacteria from Kuruma shrimp (Marsupenaeus japonicus) intestine and assessment of immunomodulatory role of a selected strain as probiotic. Mar Biotechnol 16:181–192CrossRefGoogle Scholar
  46. Malamy M, Horecker BL (1966) [113] Alkaline phosphatase (crystalline). Methods Enzymol 9:639–642CrossRefGoogle Scholar
  47. Mazorra MT, Rubio JA, Blasco J (2002) Acid and alkaline phosphatase activities in the clam Scrobicularia plana : kinetic characteristics and effects of heavy metals. Comp Biochem Physiol, Part B: Biochem Mol Biol 131:241–249CrossRefGoogle Scholar
  48. Merrifield DL, Bradley G, Baker RTM, Davies SJ (2010a) Probiotic applications for rainbow trout ( Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac Nutr 16:504–510CrossRefGoogle Scholar
  49. Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010b) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18CrossRefGoogle Scholar
  50. Mohammad BM, Roshada H, Yam HC, Terence LM, Siti A, Mohd N (2016) Dietary prebiotics and probiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (Channa striata) fingerlings. Aquaculture 460(1):59–68Google Scholar
  51. Mohapatra S, Chakraborty T, Prusty AK, Das P, Paniprasad K, Mohanta KN (2012) Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac Nutr 18:1–11CrossRefGoogle Scholar
  52. Muñoz-Atienza E, Araújo C, Magadán S, Hernández PE, Herranz C, Santos Y, Cintas LM (2014) In vitro and in vivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (Scophthalmus maximus L.) farming. Fish Shellfish Immunol 41:570–580CrossRefGoogle Scholar
  53. Muyzer G, Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  54. Nagababu E, Chrest FJ, Rifkind JM (2016) Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta 1620:211–217CrossRefGoogle Scholar
  55. Naseri S, Khara H, Shakoori M (2013) Effects of probiotics and Fe ion on the growth and survival and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792) frys. J Appl Anim Res 41:318–325CrossRefGoogle Scholar
  56. Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14CrossRefGoogle Scholar
  57. Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review: developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1–11CrossRefGoogle Scholar
  58. Nikoskelainen S, Ouwehand A, Salminen S, Bylund G (2001) Protection of rainbow trout (Oncorhynchus mykiss) fron furunculosis by Lactobacillus rhamnosus. Aquaculture 198:229–236CrossRefGoogle Scholar
  59. Ōyanagui Y (1984) Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 142:290–296CrossRefGoogle Scholar
  60. Pechal JL, Benbow ME (2016) Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ Microbiol 18:1511–1522CrossRefGoogle Scholar
  61. Pelicano E, Souza P, Souza H, Figueiredo D, Boiago M, Carvalho S, Bordon V (2005) Intestinal mucosa development in broiler chickens fed natural growth promoters. Braz J Poult Sci 7:221–229CrossRefGoogle Scholar
  62. Piccolo G, Bovera F, Lombardi P, Mastellone V, Nizza S, Meo CD, Marono S, Nizza A (2015) Effect of Lactobacillus plantarum on growth performance and hematological traits of European sea bass ( Dicentrarchus labrax ). Aquacult Int 23:1025–1032CrossRefGoogle Scholar
  63. Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GC. Res Vet Sci 91(3):e92–e97CrossRefGoogle Scholar
  64. Qu JH, Yuan HL (2008) Sediminibacterium salmoneum gen. nov., sp nov., a member of the phylum Bacteroidetes isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 58(Pt 9):2191–2194CrossRefGoogle Scholar
  65. Ran C, Carrias A, Williams MA, Capps N, Dan BC, Newton JC, Kloepper JW, Ooi EL, Browdy CL, Terhune JS (2012) Identification of Bacillus strains for biological control of catfish pathogens. PLoS One 7:e45793CrossRefGoogle Scholar
  66. Reda RM, Selim KM (2015) Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquacult Int 23:203–217CrossRefGoogle Scholar
  67. Reyes-Becerril M, Tovar-Ramírez D, Ascencio-Valle F, Civera-Cerecedo R, Gracia-López V (2011) Effects of dietary supplementation with probiotic live yeast Debaryomyces hansenii on the immune and antioxidant systems of leopard grouper Mycteroperca rosacea infected with Aeromonas hydrophila. Aquac Res 42:1676–1686CrossRefGoogle Scholar
  68. Ringø E, Salinas I, Olsen RE, Nyhaug A, Myklebust R, Mayhew TM (2007) Histological changes in intestine of Atlantic salmon ( Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. Cell Tissue Res 328:109–116CrossRefGoogle Scholar
  69. Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402SCrossRefGoogle Scholar
  70. Saraiva A, Cost J, Eiras JC, Cruz C (2016) Histological study as indicator of juveniles farmed turbot, Scophthalmus maximus L. health status. Aquaculture 459:210–215CrossRefGoogle Scholar
  71. Sayes C, Leyton Y, Riquelme C (2018) Probiotic bacteria as an healthy alternative for fish aquaculture. In: Savic S (ed) Antibiotic Use in Animals. Intech Open, London, pp 115–132Google Scholar
  72. Schrijver RD, Ollevier F (2000) Protein digestion in juvenile turbot ( Scophthalmus maximus ) and effects of dietary administration of Vibrio proteolyticus. Aquaculture 186:107–116CrossRefGoogle Scholar
  73. Somogyi M (1960) Modification of two methods for the assay of amylase. Clin Chem 6:23–35Google Scholar
  74. Standen BT, Rodiles A, Peggs DL, Davies SJ, Santos GA, Merrifield DL (2015) Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus , following the application of a multi-species probiotic. Appl Microbiol Biotechnol 99:8403–8417CrossRefGoogle Scholar
  75. Tao W, Cheng Y, Liu Z, Yan S, Long X (2013) Effects of light intensity on growth, immune response, plasma cortisol and fatty acid composition of juvenile Epinephelus coioides reared in artificial seawater. Aquaculture 414–415:135–139Google Scholar
  76. Tietz NW, Fiereck EA (1966) A specific method for serum lipase determination. Clin Chim Acta 13:352–358CrossRefGoogle Scholar
  77. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671CrossRefGoogle Scholar
  78. Wang Y, Xu Z (2006) Effect of probiotics for common carp ( Cyprinus carpio ) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol 127:283–292CrossRefGoogle Scholar
  79. Wang JH, Zhao LQ, Liu JF, Wang H, Xiao S (2015) Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 43(2):330–336CrossRefGoogle Scholar
  80. Wang X, Sun Y, Wang L, Li X, Qu K, Xu Y (2017) Synbiotic dietary supplement affects growth, immune responses and intestinal microbiota of Apostichopus japonicas. Fish Shellfish Immunol 68:232–242CrossRefGoogle Scholar
  81. Xia DD, Ma AJ, Huang ZH, Shang XM, Cui WX, Yang Z, Qu JB (2018) Molecular characterization and expression analysis of Lilytype lectin ( Sm LTL) in turbot Scophthalmus maximus, and its response to Vibrio anguillarum. J Oceanol Limnol 36(2):508–518CrossRefGoogle Scholar
  82. Yuan C, Li D, Chen W, Sun F, Wu G, Gong Y, Tang JQ, Shen MF, Han XD (2007) Administration of a herbal immunoregulation mixture enhances some immune parameters in carp (cyprinus carpio). Fish Physiol Biochem 33:93–101Google Scholar
  83. Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z (2012) Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 32:750–755CrossRefGoogle Scholar
  84. Zhu H, Liu H, Jing Y, Rui W, Liu L (2012) Effect of yeast polysaccharide on some hematologic parameter and gut morphology in channel catfish ( Ictalurus punctatus ). Fish Physiol Biochem 38:1441–1447CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zequn Li
    • 1
  • Ning Bao
    • 1
  • Tongjun Ren
    • 1
    Email author
  • Yuzhe Han
    • 1
    Email author
  • Zhiqiang Jiang
    • 1
  • Zhuoan Bai
    • 1
  • Yanan Hu
    • 1
  • Jingyun Ding
    • 1
  1. 1.Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Rural Ministry of AgricultureDalian Ocean UniversityDalianChina

Personalised recommendations