Advertisement

Fish Physiology and Biochemistry

, Volume 45, Issue 1, pp 155–166 | Cite as

Involvement of HPI-axis in anesthesia with Lippia alba essential oil citral and linalool chemotypes: gene expression in the secondary responses in silver catfish

  • Carine de Freitas Souza
  • Sharine Descovi
  • Matheus Dellaméa Baldissera
  • Kalyne Bertolin
  • Adriane Erbice Bianchini
  • Rosa Helena Veraz Mourão
  • Denise Schmidt
  • Berta Maria Heinzmann
  • Alfredo Antoniazzi
  • Bernardo Baldisserotto
  • Gonzalo Martinez-RodríguezEmail author
Article

Abstract

In teleost fish, stress initiates a hormone cascade along the hypothalamus-pituitary-interrenal (HPI) axis to provoke several physiological reactions in order to maintain homeostasis. In aquaculture, a number of factors induce stress in fish, such as handling and transport, and in order to reduce the consequences of this, the use of anesthetics has been an interesting alternative. Essential oil (EO) of Lippia alba is considered to be a good anesthetic; however, its distinct chemotypes have different side effects. Therefore, the present study aimed to investigate, in detail, the expression of genes involved with the HPI axis and the effects of anesthesia with the EOs of two chemotypes of L. alba (citral EO-C and linalool EO-L) on this expression in silver catfish, Rhamdia quelen. Anesthesia with the EO-C is stressful for silver catfish because there was an upregulation of the genes directly related to stress: slc6a2, crh, hsd20b, hspa12a, and hsp90. In this study, it was also possible to observe the importance of the hsd11b2 gene in the response to stress by handling. The use of EO-C as anesthetics for fish is not recommended, but, the use of OE-L is indicated for silver catfish as it does not cause major changes in the HPI axis.

Keywords

Fish Stress Anesthesia Natural products mRNA 

Notes

Acknowledgements

Authors are grateful to the Conselho Nacional de Desenvolvimento Tecnológico (CNPq), Comissão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and INCT-ADAPTA 2 (CNPq).

References

  1. Aneja R, Odoms K, Dunsmore K, Shanley TP, Wong HR (2006) Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol 177:7184–7192CrossRefGoogle Scholar
  2. Bakkali F, Averbeck S, Averbeck DM (2008) Biological effects of essential oil: a review. Food Chem Toxicol 46:446–475CrossRefGoogle Scholar
  3. Bakkali F, Averbeck S, Averbeck D, Zhiri A, Baudoux D, Idaomar M (2006) Antigenotoxic effects of three essential oils in diploid yeast (Saccharomyces cerevisiae) after treatments with UVC radiation, 8- MOP plus UVA and MMS. Mutat Res 606:27–38CrossRefGoogle Scholar
  4. Baldissera MD, Souza CF, Grando TH, Sagrillo MR, De Brum GF, Nascimento K, Peres DS, Maciel MF, Silveira SO, Da Luz SCA, Doleski PH, Leal DBR, da Silva AS, Monteiro SG (2016) Memory deficit, toxic effects and activity of Na+, K+-ATPase and NTPDase in brain of Wistar rats submitted to orally treatment with alpha-terpinene. Environ Toxicol Pharmacol 46:1–8CrossRefGoogle Scholar
  5. Barton BA, Morgan JD, Vijayan MM (2002) Indicators of environmental stress in fish. In: Adams SM (ed) Biological indicators of aquatic ecosystem stress. American Fisheries Society, Bethesda, USA, pp 111–148Google Scholar
  6. Basu N, Nakano T, Grau EG, Iwama GK (2001) The effects of cortisol on heat shock protein 70 levels in two fish species. Gen Comp Endocrinol 124:97–105CrossRefGoogle Scholar
  7. Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, Iwama GK (2002) Heat shock protein genes and their functional significance in fish. Gene 295:173–183CrossRefGoogle Scholar
  8. Bridgham JT, Carroll SM, Thornton JW (2006) Evolution of hormone-receptor complexity by molecular exploitation. Science 312:97–101CrossRefGoogle Scholar
  9. Bukau B, Horwich AL (1998) The HSP70 and HSP60 chaperone machines. Cell 92:351–366CrossRefGoogle Scholar
  10. Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, Rothstein JD, Borchelt DR, Wong PC, Lin CL (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3:e2849CrossRefGoogle Scholar
  11. Colt J (2001). List of spreadsheets prepared as a complement. In: Wedemeyer, G.A. (Ed.), Fish hatchery management, second ed. American Fisheries SocietyGoogle Scholar
  12. Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefGoogle Scholar
  13. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function and clinical applications. A comprehensive review Pharmacol Ther 79:129–168CrossRefGoogle Scholar
  14. Cunha MA, Barros CMF, Garcia LO, Veec APL, Heinzmann BM, Loro VL, Emanuelli T, Baldisserotto B (2010) Essential oil of Lippia alba: a new anesthetic for silver catfish, Rhamdia quelen. Aquaculture 30:403–406CrossRefGoogle Scholar
  15. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406CrossRefGoogle Scholar
  16. de Kloet RE, Oitzl MS, Joëls M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosc 22:422–426CrossRefGoogle Scholar
  17. Doyon C, Trudeau VL, Moon TW (2005) Stress elevates corticotrophin-releasing factor (CRF) and CRF-binding protein mRNA levels in rainbow trout (Oncorhynchus mykiss). J Endocrinol 186:123–130CrossRefGoogle Scholar
  18. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefGoogle Scholar
  19. Fink AL (1998) The Hsp 70 reaction cycle and its role in protein folding. In: Fink AL, Goto Y (eds) Molecular chaperones in the life cycle of proteins. Marcel Dekker, New York, pp 123–150Google Scholar
  20. Flik G, Klaren PH, Van den Burg EH, Metz JR, Huising MO (2006) CRF and stress in fish. Gen Comp Endocrinol 146:36–44CrossRefGoogle Scholar
  21. Habecker BA, Willison BD, Shi X, Woodward WR (2006) Chronic depolarization stimulates norepinephrine transporter expression via catecholamines. J Neurochem 97:1044–1051CrossRefGoogle Scholar
  22. Harris J, Bird JD (2000) Modulation of the fish immune system by hormones. Vet Immunol Immunopathol 77:163–176CrossRefGoogle Scholar
  23. Hennebelle T, Sahpaz S, Joseph H, Bailleul F (2008) Ethnopharmacology of Lippia alba. J Ethnopharmacol 116:211–222CrossRefGoogle Scholar
  24. Inoue LAKA, Neto CS, Moraes G (2003) Clove oil as anesthetic for juveniles of matrinxã Brycon cephalus (Gunther, 1969). Cienc Rur 33:937–943CrossRefGoogle Scholar
  25. Iwama GK, Thomas PT, Forsyth RB, Vijayan MM (1998) Heat-shock protein expression in fish. Rev Fish Biol Fish 8:35–56CrossRefGoogle Scholar
  26. Jiang JQ, Wang DS, Senthilkumaran B, Kobayashi T, Kobayashi HK, Yamaguchi A, Ge W, Young G, Nagaham Y (2003) Isolation, characterization and expression of 11beta-hydroxysteroid dehydrogenase type 2 cDNAs from the testes of Japanese eel (Anguilla japonica) and Nile tilapia (Oreochromis niloticus). J Mol Endocrinol 31:305–315CrossRefGoogle Scholar
  27. Kagawa N, Mugiya Y (2002) Brain HSP70 mRNA expression is linked with plasma cortisol levels in goldfish (Carassius auratus) exposed to a potential predator. Zool Sci 19:735–740CrossRefGoogle Scholar
  28. Kiessling A, Johansson D, Zahl IH, Samuelsen OB (2009) Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar) following bath administration. Aquaculture 286:301–308CrossRefGoogle Scholar
  29. Kusakabe M, Nakamura I, Young G (2003) 11 beta-hydroxysteroid dehydrogenase complementary deoxyribonucleic acid in rainbow trout: cloning, sites of expression, and seasonal changes in gonads. Endocrinology 144:2534–2545CrossRefGoogle Scholar
  30. Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisher 9:211–268CrossRefGoogle Scholar
  31. Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S, Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964CrossRefGoogle Scholar
  32. Padmini E, Rani MU (2009) Seasonal influence on heat shock protein 90α and heat shock factor 1 expression during oxidative stress in fish hepatocytes from polluted estuary. J Exp Mar Bio Ecol 372:1–8CrossRefGoogle Scholar
  33. Parodi TV, Cunha MA, Becker AG, Zeppenfeld CC, Martins DI, Koakoski G, Barcellos LG, Heinzmann BM, Baldisserotto B (2013) Anesthetic activity of the essential oil of Aloysia triphylla and effectiveness in reducing stress during transport of albino and gray strains of silver catfish, Rhamdia quelen. Fish Physiol Biochem 40:323–334CrossRefGoogle Scholar
  34. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2003–2007CrossRefGoogle Scholar
  35. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360Google Scholar
  36. Saccol EMH, Jerez-Cepa I, Ourique GM, Pês TS, Gressler LT, Mourão RHV, Martínez-Rodríguez G, Mancera JM, Baldisserotto B, Pavanato MA, Martos-Sitcha JA (2018) Myrcia sylvatica essential oil mitigates molecular, biochemical and physiological alterations in Rhamdia quelen under different stress events associated to transport. Res Vet Sci 117:150–160CrossRefGoogle Scholar
  37. Sathiyaa R, Vijayan MM (2003) Autoregulation of glucocorticoid receptor by cortisol in rainbow trout hepatocytes. Cell Physiol 284:1508–1515CrossRefGoogle Scholar
  38. Shan X, Lin CL (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662CrossRefGoogle Scholar
  39. Souza CF, Baldissera MD, Bianchini AE, da Silva EG, Mourão RHV, da Silva LVF, Schmidt D, Heinzmann BM, Baldisserotto B (2018) Citral and linalool chemotypes of Lippia alba essential oil as anesthetics for fish: a detailed physiological analysis of side effects during anesthetic recovery in silver catfish (Rhamdia quelen). Fish Physiol Biochem 44:21–34CrossRefGoogle Scholar
  40. Souza CF, Baldissera MD, Salbego J, Lopes J, Vaucher RA, Mourão R, Caron BO, Heinzmann BM, Baldisserotto B (2017) Physiological responses of silver catfish to anesthesia with essential oils from two different chemotypes of Lippia alba. Neotrop Ichthyol 15:e160083CrossRefGoogle Scholar
  41. Stolte EH, Kemenade BMLVV, Savelkoul HFJ, Flik G (2006) Evolution of glucocorticoid receptors with different glucocorticoid sensitivity. J Endocrinol 190:17–12CrossRefGoogle Scholar
  42. Takahashi A, Kawauchi H (2006) Diverse structures and functions of melanocortin, endorphin and melanin-concentrating hormone in fish. In: Zaccone G, Reinecke M, Kapoor BG (eds) Fish endocrinology. Science Publishers, Enfield, pp 325–392Google Scholar
  43. Thomas P (1990) Molecular and biochemical responses of fish to stressors and their potential use in environmental monitoring. Am Fish Soc Symp 8:9–28Google Scholar
  44. Tokarz J, Norton W, Möller G, de Angelis MH, Adamski J (2013) Zebrafish 20b-Hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response. PLoS One 8:e54851CrossRefGoogle Scholar
  45. Verdouw H, Vanechteld CJA, Deckkers EMJ (1978) Ammonia determinations based on indophenol formation with sodium salicylate. Water Res 12:399–402CrossRefGoogle Scholar
  46. Wendelaar Bonga SE (2011) Hormonal responses to stress. In: Farrell AP, Cech JJ, Richards JG, Stevens ED (eds) Encyclopedia of fish physiology: from genome to environment. Elsevier, Vancouver, pp 1515–1523CrossRefGoogle Scholar
  47. Wunderink YS, Engels S, Halm S, Yúfera M, Martínez-Rodríguez G, Flik G, Klaren PHM, Mancera JM (2011) Chronic and acute stress responses in Senegalese sole (Solea senegalensis): the involvement of cortisol, CRH and CRH-BP. Gen Comp Endocrinol 171:203–210CrossRefGoogle Scholar
  48. Wunderink YS, de Vrieze E, Metz JR, Halm S, Martínez-Rodríguez G, Flik G, Klaren PHM, Mancera JM (2012) Subfunctionalization of POMC paralogues in Senegalese sole (Solea senegalensis). Gen CompEndocrinol 175:407–415CrossRefGoogle Scholar
  49. Xia H, Liang W, Song Q, Chen X, Hong J (2013) The in vitro study of apoptosis in NB4 cells induced by citral. Cytotechnology 65:49–57CrossRefGoogle Scholar
  50. Yoo CB, Han KT, Cho KS, Ha J, Park HJ, Nam JH, Kil UH, Lee KT (2005) Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett 225:41–52CrossRefGoogle Scholar
  51. Zahl IH, Samuelsen O, Kiessling A (2012) Anaesthesia of farmed fish: implications for welfare. Fish Physiol Biochem 38:201–218CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Carine de Freitas Souza
    • 1
    • 2
  • Sharine Descovi
    • 1
  • Matheus Dellaméa Baldissera
    • 3
  • Kalyne Bertolin
    • 4
  • Adriane Erbice Bianchini
    • 1
  • Rosa Helena Veraz Mourão
    • 5
  • Denise Schmidt
    • 6
  • Berta Maria Heinzmann
    • 7
  • Alfredo Antoniazzi
    • 4
  • Bernardo Baldisserotto
    • 1
  • Gonzalo Martinez-Rodríguez
    • 2
    Email author
  1. 1.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil
  2. 2.Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC)CádizSpain
  3. 3.Departamento de Microbiologia e Parasitologia, Programa de Pós-graduação em FarmacologiaUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil
  4. 4.Laboratório de Reprodução Animal – BiorepUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil
  5. 5.Programa de Pós-Graduação em Recursos Naturais da Amazônia, Laboratório de Bioprospecção e Biologia ExperimentalUniversidade Federal do Oeste do Pará–UFOPASantarémBrazil
  6. 6.Departamento de Agronomia e Ciências AmbientaisUniversidade Federal de Santa MariaFrederico WestphalenBrazil
  7. 7.Departamento de Farmácia IndustrialUniversidade Federal de Santa Maria – UFSMSanta MariaBrazil

Personalised recommendations