New insights into the evolution, hormonal regulation, and spatiotemporal expression profiles of genes involved in the Gfra1/Gdnf and Kit/Kitlg regulatory pathways in rainbow trout testis

  • Ahmed Maouche
  • Edouard Curran
  • Anne-Sophie Goupil
  • Elisabeth Sambroni
  • Johanna Bellaiche
  • Florence Le Gac
  • Jean-Jacques Lareyre


The present study aimed to investigate whether the Gfra1/Gdnf and/or Kit/Kitlg regulatory pathways could be involved in the regulation of spermatogonial cell proliferation and/or differentiation in fish. Homologs of the mammalian gfra1, gdnf, kitr, and kitlg genes were identified in gnathostomes and reliable orthologous relationships were established using phylogenetic reconstructions and analyses of syntenic chromosomal fragments. Gene duplications and losses occurred specifically in teleost fish and members of the Salmoninae family including rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Some duplicated genes exhibited distinct spatiotemporal expression profiles and were differently regulated by hormones in rainbow trout. Undifferentiated type A spermatogonia expressed higher levels of kitrb and kitra2 making them possible target cells for the gonadal kitlgb and somatic kitlga before the onset of spermatogenesis. Interestingly, gdnfa and gdnfb ohnologous genes were poorly expressed before the onset of spermatogenesis. The expression level of gdnfb was correlated with that of the vasa gene suggesting that the late increased abundance of gdnfb during spermatogenesis onset was due to the increased number of spermatogonial cells. gfra1a2 was expressed in undifferentiated type A spermatogonia whereas gfra1a1 was mainly detected in somatic cells. These observations indicate that the germinal gdnfb ligand could exert autocrine and paracrine functions on spermatogonia and on testicular somatic cells, respectively. Fsh and androgens inhibited gfra1a2 and gdnfb whereas gfra1a1 was stimulated by Fsh, androgens, and 17α, 20β progesterone. Finally, our data provide evidences that the molecular identity of the male germ stem cells changes during ontogenesis prior to spermatogenesis onset.


Oncorhynchus mykiss Spermatogenesis Germ stem cell Gfra1 Gdnf Kit Kit ligand Stem cell factor 



The authors thank the animal care facility of the LPGP research department, especially Frédéric Borel, Amélie Patinote, and Cécile Melin. The authors thank Laurent Labbé and Lionel Goardon from the INRA PEIMA experimental fish farm for providing the monosex males and Drs. Alexis Fostier and Yann Guiguen for the gift of the rainbow trout YY sperm.

Funding information

The research leading to these results has received funding from the European Community’s Horizon 2020 research infrastructure project (INFRAIA-1-2014/2015) under grant agreement no. 652831 (project AQUAEXCEL2020) and from the French National Research Agency under grand agreement no. 11-INBS-0003 (CRB anim project). Ahmed Maouche gratefully acknowledges the Britany province (Région Bretagne) and the INRA PHASE department for the funding received towards his PhD.

Supplementary material

10695_2018_547_MOESM1_ESM.pdf (257 kb)
ESM 1 (PDF 257 kb)
10695_2018_547_MOESM2_ESM.pdf (284 kb)
ESM 2 (PDF 283 kb)
10695_2018_547_MOESM3_ESM.pdf (344 kb)
ESM 3 (PDF 344 kb)
10695_2018_547_MOESM4_ESM.pdf (618 kb)
ESM 4 (PDF 617 kb)
10695_2018_547_MOESM5_ESM.pdf (405 kb)
ESM 5 (PDF 405 kb)
10695_2018_547_MOESM6_ESM.pdf (409 kb)
ESM 6 (PDF 408 kb)
10695_2018_547_MOESM7_ESM.pdf (152 kb)
ESM 7 (PDF 151 kb)
10695_2018_547_MOESM8_ESM.pdf (472 kb)
ESM 8 (PDF 472 kb)
10695_2018_547_MOESM9_ESM.pdf (96 kb)
ESM 9 (PDF 95 kb)


  1. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714CrossRefPubMedGoogle Scholar
  2. Bellaiche J, Goupil AS, Sambroni E, Lareyre JJ, Le Gac F (2014a) Gdnf-gfra1 pathway is expressed in a spermatogenetic-dependent manner and is regulated by fsh in a fish testis. Biol Reprod 91:94CrossRefPubMedGoogle Scholar
  3. Bellaiche J, Lareyre JJ, Cauty C, Yano A, Allemand I, Le Gac F (2014b) Spermatogonial stem cell quest: nanos2, marker of a subpopulation of undifferentiated a spermatogonia in trout testis. Biol Reprod 90:79CrossRefPubMedGoogle Scholar
  4. Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noel B, Bento P, Da Silva C, Labadie K, Alberti A, Aury JM, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard GH, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff JN, Genet C, Wincker P, Jaillon O, Roest Crollius H, Guiguen Y (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bosseboeuf A, Gautier A, Auvray P, Mazan S, Sourdaine P (2013) Characterization of spermatogonial markers in the mature testis of the dogfish (Scyliorhinus canicula L.). Reproduction 147:125–139CrossRefPubMedGoogle Scholar
  6. Braydich-Stolle L, Nolan C, Dym M, Hofmann MC (2005) Role of glial cell line-derived neurotrophic factor in germ-line stem cell fate. Ann N Y Acad Sci 1061:94–99CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brunet FG, Roest Crollius H, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23:1808–1816CrossRefPubMedGoogle Scholar
  8. Busada JT, Kaye EP, Renegar RH, Geyer CB (2014) Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse. Biol Reprod 90:64CrossRefPubMedPubMedCentralGoogle Scholar
  9. De Felici M (2000) Regulation of primordial germ cell development in the mouse. Int J Dev Biol 44:575–580PubMedGoogle Scholar
  10. Dolci S, Williams DE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Lyman SD, Boswell HS, Donovan PJ (1991) Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352:809–811CrossRefPubMedGoogle Scholar
  11. Fan L, Moon J, Wong TT, Crodian J, Collodi P (2008) Zebrafish primordial germ cell cultures derived from vasa::RFP transgenic embryos. Stem Cells Dev 17:585–597CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gautier A, Bosseboeuf A, Auvray P, Sourdaine P (2014) Maintenance of potential spermatogonial stem cells in vitro by GDNF treatment in a chondrichthyan model (Scyliorhinus canicula L.). Biol Reprod 91:91CrossRefPubMedGoogle Scholar
  13. Hara K, Nakagawa T, Enomoto H, Suzuki M, Yamamoto M, Simons BD, Yoshida S (2014) Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14:658–672CrossRefPubMedPubMedCentralGoogle Scholar
  14. He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M (2008) Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells 26:266–278CrossRefPubMedGoogle Scholar
  15. Helsel AR, Yang QE, Oatley MJ, Lord T, Sablitzky F, Oatley JM (2017) ID4 levels dictate the stem cell state in mouse spermatogonia. Development 144:624–634CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R, Louis JC, Hu S, Altrock BW, Fox GM (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85:1113–1124CrossRefPubMedGoogle Scholar
  17. Kanatsu-Shinohara M, Inoue K, Takashima S, Takehashi M, Ogonuki N, Morimoto H, Nagasawa T, Ogura A, Shinohara T (2012) Reconstitution of mouse spermatogonial stem cell niches in culture. Cell Stem Cell 11:567–578CrossRefPubMedGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  19. Lacerda SM, Batlouni SR, Costa GM, Segatelli TM, Quirino BR, Queiroz BM, Kalapothakis E, Franca LR (2010) A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One 5:e10740CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lacerda SM, Costa GM, da Silva MA, Campos-Junior PH, Segatelli TM, Peixoto MT, Resende RR, de Franca LR (2013) Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen Comp Endocrinol 192:95–106CrossRefGoogle Scholar
  21. Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Vage DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, Davidson WS (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205CrossRefPubMedGoogle Scholar
  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  23. Loir M (1999) Spermatogonia of rainbow trout: I. Morphological characterization, mitotic activity, and survival in primary cultures of testicular cells. Mol Reprod Dev 53:422–433CrossRefPubMedGoogle Scholar
  24. Loir M, Sourdaine P (1994) Testes cells: isolation and culture. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes: analytical techniques. Elsevier, Amsterdam, pp 249–272Google Scholar
  25. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493CrossRefPubMedGoogle Scholar
  26. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937–945CrossRefPubMedGoogle Scholar
  27. Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S (2010) Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328:62–67CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nakajima S, Hayashi M, Kouguchi T, Yamaguchi K, Miwa M, Yoshizaki G (2014) Expression patterns of gdnf and gfralpha1 in rainbow trout testis. Gene Expr Patterns 14:111–120CrossRefPubMedGoogle Scholar
  29. Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J (2006) Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74:314–321CrossRefPubMedGoogle Scholar
  30. Nobrega RH, Greebe CD, van de Kant H, Bogerd J, de Franca LR, Schulz RW (2010) Spermatogonial stem cell niche and spermatogonial stem cell transplantation in zebrafish. PLoS One 5:e12808CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, Berlin, p 160CrossRefGoogle Scholar
  32. Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci U S A 103:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  33. Orth JM, Jester WF Jr (1995) NCAM mediates adhesion between gonocytes and Sertoli cells in cocultures from testes of neonatal rats. J Androl 16:389–399PubMedGoogle Scholar
  34. Panda RP, Barman HK, Mohapatra C (2011) Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology 76:241–251CrossRefPubMedGoogle Scholar
  35. Pesce M, Di Carlo A, De Felici M (1997) The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture. Mech Dev 68:37–44CrossRefPubMedGoogle Scholar
  36. Pitetti JL, Calvel P, Zimmermann C, Conne B, Papaioannou MD, Aubry F, Cederroth CR, Urner F, Fumel B, Crausaz M, Docquier M, Herrera PL, Pralong F, Germond M, Guillou F, Jegou B, Nef S (2013) An essential role for insulin and IGF1 receptors in regulating sertoli cell proliferation, testis size, and FSH action in mice. Mol Endocrinol 27:814–827CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rolland AD, Lareyre JJ, Goupil AS, Montfort J, Ricordel MJ, Esquerre D, Hugot K, Houlgatte R, Chalmel F, Le Gac F (2009) Expression profiling of rainbow trout testis development identifies evolutionary conserved genes involved in spermatogenesis. BMC Genomics 10:546CrossRefPubMedPubMedCentralGoogle Scholar
  38. Runyan C, Schaible K, Molyneaux K, Wang Z, Levin L, Wylie C (2006) Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133:4861–4869CrossRefPubMedGoogle Scholar
  39. Sambroni E, Rolland AD, Lareyre JJ, Le GF (2013) FSH and LH have common and distinct effects on gene expression in rainbow trout testis. J Mol Endocrinol 50:1–18CrossRefPubMedGoogle Scholar
  40. Schulz RW, Menting S, Bogerd J, Franca LR, Vilela DA, Godinho HP (2005) Sertoli cell proliferation in the adult testis--evidence from two fish species belonging to different orders. Biol Reprod 73:891–898CrossRefPubMedGoogle Scholar
  41. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y (2002) Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 113:29–39CrossRefPubMedGoogle Scholar
  42. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  43. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83CrossRefPubMedGoogle Scholar
  44. Western PS, Miles DC, van den Bergen JA, Burton M, Sinclair AH (2008) Dynamic regulation of mitotic arrest in fetal male germ cells. Stem Cells 26:339–347CrossRefPubMedGoogle Scholar
  45. Yang Y, Han C (2010) GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell Biol 11:78CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.INRA, UPR 1037 Laboratory of Fish Physiology and Genomics (LPGP), BIOSIT, OUEST-genopoleRennes CEDEXFrance

Personalised recommendations